pandas常用方法总结】的更多相关文章

数据处理很多需要用到pandas,有两个基本类型:Series表示一维数据,DataFrame表示多维.以下是一些常用方法的整理: pandas.Series 创建 Series pandas.Series( data, index, dtype, copy) name value data 数据采取各种形式,如:ndarray,list,dict, constants(常量) index 索引值必须是唯一的和散列的,与数据的长度相同. 默认np.arange(n)如果没有索引被传递. dtyp…
from pandas import DataFrame import numpy as np import pandas as pd t={ , , np.nan, , np.nan, ], "city": ["BeiJing", "ShangHai", "GuangZhou", "ShenZhen", 'BeiJing', "ShangHai"], "sex":…
关键缩写和包导入 在这个速查手册中,我们使用如下缩写: df:任意的Pandas DataFrame对象 同时我们需要做如下的引入: import pandas as pd 导入数据 pd.read_csv(filename) 从CSV文件导入数据 pd.read_table(filename) 从限定分隔符的文本文件导入数据 pd.read_excel(filename) 从Excel文件导入数据 pd.read_sql(query, connection_object) 从SQL表/库导入数…
In [49]: frame2 Out[49]: year state pop debt one 2000 Ohio 1.5 NaN two 2001 Ohio 1.7 NaN three 2002 Ohio 3.6 NaN four 2001 Nevada 2.4 NaN five 2002 Nevada 2.9 NaN six 2003 Nevada 3.2 NaN取一列的值可以frame2.state或者frame2['state']frame2['debt'] = 16.5可以填充一列删…
目录 1. 常用方法 pandas.Series 2. pandas.DataFrame ([data],[index])   根据行建立数据 3. pandas.DataFrame ({dic}) 根据列建立数据 4. pandas.DataFrame([list])根据数据建立列数据 5. loc / iloc 数据筛选 6. 多级行索引 7. 使用 pandas.MultiIndex 显式创建多级行索引 8. 多级行索引的升维及降维 9. 在DataFrame 中添加列 insert 10…
pandas:数据分析 pandas是一个强大的Python数据分析的工具包.pandas是基于NumPy构建的. pandas的主要功能具备对其功能的数据结构DataFrame.Series集成时间序列功能提供丰富的数学运算和操作灵活处理缺失数据 安装方法:pip install pandas引用方法:import pandas as pd pandas:Series Series是一种类似于一位数组的对象,由一组数据和一组与之相关的数据标签(索引)组成. 创建方式: pd.Series([4…
numpy: import numpy as np np.array([1,2,3]) 创建数组 np.arange(10).reshape(2,5) 类似于range(起始,终止,步长),可以加reshape(2,5)定义形状.必须是相乘等于前面的size np.linsapace(1,10,10) 参数为:起始,终止,平分多少个 zeros((2,4)) 根据指定形状和dtype创建全0数组 ones((2,4)) 根据指定形状和dtype创建全1数组 empty((2,4)) 根据指定形状…
pandas 是一个基于 Numpy 构建, 强大的数据分析工具包 主要功能 独特的数据结构 DataFrame, Series 集成时间序列功能 提供丰富的数学运算操作 灵活处理缺失数据 Series 一维数组 Series 是一种类似于一维数组的对象, 由一组数据和一组与之相关的数据标签(索引)组成 创建方式 pd.Series([4, 7 ,5, -3]) pd.Series([4, 7 ,5, -3], index=['a', 'b', 'c', 'd']) pd.Series({'a'…
pandas 安装方法:pip3 install pandas pandas是一个强大的Python数据分析的工具包,它是基于NumPy构建的模块. pandas的主要功能: 具备对其功能的数据结构DataFrame.Series 集成时间序列功能 提供丰富的数学运算和操作(实质是NumPy提供的) 灵活处理缺失数据(NaN) 引用方法:import pandas as pd Series Series是一种类似于一维数组的对象,由一组数据和一组与之相关的数据标签(索引)组成.索引可以自定义如果…
一.pandas概述 1.pandas是一个强大的Python数据分析的工具包,是基于NumPy构建的. 2.pandas的主要功能 具备对其功能的数据结构DataFrame.Series 集成时间序列功能 提供丰富的数学运算和操作 灵活处理缺失数据 3.python中操作方式: 安装方法:pip install pandas 引用方法:import pandas as pd 4.也可以通过安装anaconda软件操作,里面包含(numpy,pandas以及Matplotlib多个库),本片文章…