Hermite 矩阵的特征值不等式】的更多相关文章

将要学习 关于 Hermite 矩阵的特征值不等式. Weyl 定理 以及推论.   Weyl 定理 Hermann Weyl 的如下定理是大量不等式的基础,这些不等式要么涉及两个 Hermite 矩阵之和,要么与加边的 Hermite 矩阵有关.     定理1(Weyl): 设 \(A,B \in M_n\) 是 Hermite 矩阵,又设 \(A,B\) 以及 \(A+B\) 各自的特征值分别是 \(\{\lambda_i(A)\}_{i=1}^n, \{\lambda_i(B)\}_{i…
将学习到什么 矩阵 \(A\) 与 \(\dfrac{1}{2}(A+A^T)\) 两者生成相同的二次型,而后面那个矩阵是对称的,这样以来,为了研究实的或者复的二次型,就只需要研究由对称矩阵生成的二次型.   基本概念   定义1: 矩阵 \(A=[a_{ij}] \in M_n\) 称为 Hermite 的,如果 \(A=A^*\):它是斜 Hermite 的,如果 \(A=-A^*\). 对于 \(A,B \in M_n\),可得出很多简单明了的结论:   (1) \(A+A^*\), \(…
2016-01-27 21:03 524人阅读 评论(0) 收藏 举报 分类: 理论/笔记(20) 版权声明:本文为博主原创文章,转载请注明出处,谢谢! 题目:对称矩阵.Hermite矩阵.正交矩阵.酉矩阵.奇异矩阵.正规矩阵.幂等矩阵 看文献的时候,经常见到各种各样矩阵,本篇总结了常见的对称矩阵.Hermite矩阵.正交矩阵.酉矩阵.奇异矩阵.正规矩阵.幂等矩阵七种矩阵的定义,作为概念备忘录吧,忘了可以随时查一下. 1.对称矩阵(文献[1]第40页) 其中上标T表示求矩阵的转置(文献[1]第3…
"QR_H.m" function [Q,R] = QR_tao(A) %输入矩阵A %输出正交矩阵Q和上三角矩阵R [n,n]=size(A); E = eye(n); X = zeros(n,); R = zeros(n); P1 = E; :n- s = -sign(A(k,k))*norm(A(k:n,k)); R(k,k) = -s; w = [A(,)+s,A(:n,k)']'; else w = [zeros(,k-),A(k,k)+s,A(k+:n,k)']'; R(:…
矩阵的特征值和特征向量是线性代数以及矩阵论中很重要的一个概念.在遥感领域也是经经常使用到.比方多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量. 依据普通线性代数中的概念,特征值和特征向量能够用传统的方法求得,可是实际项目中一般都是用数值分析的方法来计算,这里介绍一下雅可比迭代法求解特征值和特征向量. 雅克比方法用于求实对称阵的所有特征值.特征向量. 对于实对称阵 A,必有正交阵 U.使 U TA U = D. 当中 D 是对角阵,其主对角线元 li 是…
1.对称矩阵 2.Hermite矩阵 3.正交矩阵 4.酉矩阵…
在读线代书.因为之前并没有上过线性代数的课.所以决定把基础打牢牢. 读书的时候当然会出现不懂的概念和术语或者定理什么的.所以在这记录一下啦--- hermit矩阵要理解它好像先要知道什么是共轭(conjugate). 参见百度百科:https://baike.baidu.com/item/%E5%85%B1%E8%BD%AD/31802 本意:两头牛背上的架子称为轭,轭使两头牛同步行走.共轭即为按一定的规律相配的一对.通俗点说就是孪生. 共轭关系,通俗来说一般用以描述两件事物以一定规律相互配对或…
GNU scientific library 是一个强大的C,C++数学库.它涉及的面很广,并且代码效率高,接口丰富.正好最近做的一个项目中用到多元高斯分布,就找到了这个库. GNU scientific library下载地址:http://ftpmirror.gnu.org/gsl/ 相应说明文档下载地址: http://www.gnu.org/software/gsl/manual/gsl-ref.ps.gz 编译时需要加上一些后缀: g++ xxx.cpp -lgsl -lgslcbla…
摘自http://qianjigui.iteye.com/blog/847612 GSL(GNU Scientific Library)是一个 C 写成的用于科学计算的库,下面是一些相关的包 Desired=Unknown/Install/Remove/Purge/Hold | Status=Not/Inst/Cfg-files/Unpacked/Failed-cfg/Half-inst/trig-aWait/Trig-pend |/ Err?=(none)/Hold/Reinst-requir…
[前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征值和特征向量(Characteristic Vectors)求解算法——雅克比算法(Jacobi).Jacobi算法的原理和实现可以参考[https://blog.csdn.net/zhouxuguang236/article/details/40212143].通过Jacobi算法可以以任意精度近…