R in Action 读书笔记(6)基本图形】的更多相关文章

16.1 R 中的四种图形系统 基础图形函数可自动调用,而grid和lattice函数的调用必须要加载相应的包(如library(lattice)).要调用ggplot2函数需下载并安装该包(install.packages("ggplot2")),第一次使用前还要进行加载(library(ggplot2)). 16.2 lattice 包 lattice包为单变量和多变量数据的可视化提供了一个全面的图形系统.在一个或多个其他变量的条件下,栅栏图形展示某个变量的分布或与其他变量间的关系…
16.2.4 图形参数 在lattice图形中,lattice函数默认的图形参数包含在一个很大的列表对象中,你可通过trellis.par.get()函数来获取,并用trellis.par.set()函数来修改.show.settings()函数可展示当前的图形参数设置情况.查看当前的默认设置,并将它们存储到一个mysettings列表中: > show.settings() > mysettings<-trellis.par.get() 查看叠加点的默认设置值: > mysett…
6.3直方图 hist() 其中的x是一个由数据值组成的数值向量.参数freq=FALSE表示根据概率密度而不是频数绘制图形.参数breaks用于控制组的数量.在定义直方图中的单元时,默认将生成等距切分. par(mfrow=c(2,2)) hist(mtcars$mpg)#简单直方图 hist(mtcars$mpg#指定组数和颜色         breaks=12,         col="red",         xlab="Miles Per Gallon&quo…
第六章  基本图形 6.1条形图 条形图通过垂直的或水平的条形展示了类别型变量的分布(频数).函数:barplot(height) 6.1.1简单的条形图 6.1.2推砌条形图和分组条形图 如果height是一个矩阵而不是一个向量,则绘图结果将是一幅堆砌条形图或分组条形图.若beside=FALSE(默认值),则矩阵中的每一列都将生成图中的一个条形,各列中的值将给出堆砌的“子条”的高度.若beside=TRUE,则矩阵中的每一列都表示一个分组,各列中的值将并列而不是堆砌. 6.1.3均值条形图…
处理缺失数据的高级方法 15.1 处理缺失值的步骤 一个完整的处理方法通常包含以下几个步骤: (1) 识别缺失数据: (2) 检查导致数据缺失的原因: (3) 删除包含缺失值的实例或用合理的数值代替(插补)缺失值. 缺失数据的分类: (1) 完全随机缺失:若某变量的缺失数据与其他任何观测或未观测变量都不相关,则数据为完全随机缺失(MCAR) (2) 随机缺失:若某变量上的缺失数据与其他观测变量相关,与它自己的未观测值不相关,则数据为随机缺失(MAR) (3) 非随机缺失 若缺失数据不属于MCAR…
第十四章:主成分和因子分析 本章内容 主成分分析 探索性因子分析 其他潜变量模型 主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分.探索性因子分析(EFA)是一系列用来发现一组变量的潜在结构的方法.它通过寻找一组更小的.潜在的或隐藏的结构来解释已观测到的.显式的变量间的关系. PCA与EFA模型间的区别 主成分(PC1和PC2)是观测变量(X1到X5)的线性组合.形成线性组合的权重都是通过最大化各主成分所解释的方差来获得,同时还要保证个…
第十一章中级绘图 本章内容: 二元变量和多元变量关系的可视化 绘制散点图和折线图 理解相关图 学习马赛克图和关联图 本章用到的函数有: plot hexbin ablines iplot scatterplot scatterplot3d pairs plot3d scatterplotMatrix scatter3d cpairs symbols smoothScatter   11.1散点图 添加了最佳拟合曲线的散点图 > attach(mtcars) > plot(wt,mpg,main…
功效分析 功效分析可以帮助在给定置信度的情况下,判断检测到给定效应值时所需的样本量.反过来,它也可以帮助你在给定置信度水平情况下,计算在某样本量内能检测到给定效应值的概率.如果概率低得难以接受,修改或者放弃这个实验将是一个明智的选择. 10.1假设检验速览 在研究过程时,研究者通常关注四个量:样本大小.显著性水平.功效和效应值.样本大小指的是实验设计中每种条件/组中观测的数目.显著性水平(也称为alpha)由I型错误的概率来定义.也可以把它看做是发现效应不发生的概率.功效通过1减去II型错误的概…
第九章方差分析 9.2 ANOVA 模型拟合 9.2.1 aov()函数 aov(formula, data = NULL, projections =FALSE, qr = TRUE, contrasts = NULL, ...) 9.2.2 表达式中各项的顺序 y ~ A + B + A:B 有三种类型的方法可以分解等式右边各效应对y所解释的方差.R默认类型I 类型I(序贯型) 效应根据表达式中先出现的效应做调整.A不做调整,B根据A调整,A:B交互项根据A和 B调整. 类型II(分层型)…