TensorRT PoolingLayer】的更多相关文章

TensorRT PoolingLayer IPoolingLayer在通道中实现池.支持的池类型有maximum.average和maximum average混合. Layer Description: 2D pooling层描述:二维池 用2D滤波器计算a维张量a上的池,生成B维的张量B.B的维数取决于a的维数.窗口大小r.对称填充p和步长s,因此: PoolingType::kMAX Maximum over elements in window. PoolingType::kAVERA…
TensorRT是什么 建议先看看这篇https://zhuanlan.zhihu.com/p/35657027 深度学习 训练 部署 平常自学深度学习的时候关注的更多是训练的部分,即得到一个模型.而实际工作很大一块的工作内容集中于如何将模型部署到具体的芯片上.你自己写的模型效果是很难优于成熟的知名的模型的. 以无人驾驶为例,拍摄到图片后,芯片上的加载的模型要能够识别出图片里是什么.对自动驾驶这种场景而言,对实时性地要求是非常高的.试想,从图片输入到模型,到模型识别出图片中前方有个人花了1分钟,…
本文是基于TensorRT 5.0.2基础上,关于其内部的yolov3_onnx例子的分析和介绍. 本例子展示一个完整的ONNX的pipline,在tensorrt 5.0的ONNX-TensorRT基础上,基于Yolov3-608网络进行inference,包含预处理和后处理. 首先,从作者网站下载yolov3,然后将其转换成onnx形式,接着基于onnx的graph生成一个tensorrt engine; 然后,在样本图片上进行预处理,并将结果作为engine的输入; 在inference之…
本文是基于TensorRT 5.0.2基础上,关于其内部的uff_custom_plugin例子的分析和介绍. 本例子展示如何使用cpp基于tensorrt python绑定和UFF解析器进行编写plugin.该例子实现一个clip层(以CUDA kernel实现),然后封装成一个tensorrt plugin,然后生成一个动态共享库,用户可以动态的在python中链接该库,将该plugin注册到tensorrt的plugin registry中,并让UFF解析器能够使用. 该例子还是有些知识点…
本文是基于TensorRT 5.0.2基础上,关于其内部的fc_plugin_caffe_mnist例子的分析和介绍. 本例子相较于前面例子的不同在于,其还包含cpp代码,且此时依赖项还挺多.该例子展示如何使用基于cpp写的plugin,用tensorrt python 绑定接口和caffe解析器一起工作的过程.该例子使用cuBLAS和cuDNn实现一个全连接层,然后实现成tensorrt plugin,然后用pybind11生成对应python绑定,这些绑定随后被用来注册为caffe解析器的一…
本文是基于TensorRT 5.0.2基础上,关于其内部的network_api_pytorch_mnist例子的分析和介绍. 本例子直接基于pytorch进行训练,然后直接导出权重值为字典,此时并未dump该权重:接着基于tensorrt的network进行手动设计网络结构并填充权重.本文核心在于介绍network api的使用 1 引言 假设当前路径为: TensorRT-5.0.2.6/samples 其对应当前例子文件目录树为: # tree python python ├── comm…
本文是基于TensorRT 5.0.2基础上,关于其内部的end_to_end_tensorflow_mnist例子的分析和介绍. 1 引言 假设当前路径为: TensorRT-5.0.2.6/samples 其对应当前例子文件目录树为: # tree python python ├── common.py ├── end_to_end_tensorflow_mnist │   ├── model.py │   ├── README.md │   ├── requirements.txt │  …
本文是基于TensorRT 5.0.2基础上,关于其内部的introductory_parser_samples例子的分析和介绍. 1 引言 假设当前路径为: TensorRT-5.0.2.6/samples 其对应当前例子文件目录树为: # tree python python/ ├── common.py ├── introductory_parser_samples │   ├── caffe_resnet50.py │   ├── onnx_resnet50.py │   ├── REA…
在tensorflow1.8之后的版本中,tensorflow.contrib部分都有tensorrt的组件,该组件存在的意义在于,你可以读取pb文件,并调用tensorrt的方法进行subgraph压缩,其他不能压缩的subgraph依然被tensorflow所处理.这样的操作方式就不同于你生成一个pb文件,然后单独用tensorrt的其他工具等等进行操作的方式了. 不同版本的tensorrt,其改动还是较多的,本文是基于tensorrt-integration-speeds-tensorfl…
下表列出了TensorRT层和每个层支持的精确模式.它还列出了该层在深度学习加速器(DLA)上运行的能力.有关附加约束的更多信息,请参见 DLA Supported Layershttps://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#dla_layers .有关每个TensorRT层的更多信息,请参见TensorRT层.要查看每个层支持的特定属性列表,请参考TensorRT API文档https:/…