【笔记】初探KNN算法(3)】的更多相关文章

KNN算法(3) 测试算法的目的就是为了帮助我们选择一个更好的模型 训练数据集,测试数据集方面 一般来说,我们训练得到的模型直接在真实的环境中使用 这就导致了一些问题 如果模型很差,未经改进就应用在现实环境下,那这样得到的预测结果必然是不好的,而且在真实环境中,是难以拿到真实的label(输出结果)的 因此,很明显,训练和测试同步进行是不恰当的,应该进行训练和测试数据分离,通过测试数据直接判断模型的好坏,在模型进入真实的环境中改进模型,不断的优化改进模型 先前的计算是将全部的X都当做了测试数据集…
KNN算法(2) 机器学习算法封装 scikit-learn中的机器学习算法封装 在python chame中将算法写好 import numpy as np from math import sqrt from collections import Counter def kNN_classify(k, X_train, y_train , x): assert 1 <= k <= X_train.shape[0],"k must be valid" assert X_t…
KNN算法(1) 全称是K Nearest Neighbors k近邻算法: 思想简单 需要的数学知识很少 效果不错 可以解释机器学习算法使用过程中的很多细节问题 更加完整的刻画机器学习应用的流程 其思想总的来说就是在多个样本之间进行比较,越相似的话,新的样本就有更高的概率属于这个类别,一般用来解决分类问题,关于操作流程,简单来说,就是一个新样本进入以后,我们需要k个邻居(距离最近的样本)来判断猜测新样本的符合的类别 对于两个特征点的距离计算,可以使用欧拉距离,但是往往算的是不止三维的,所以可以…
1.KNN算法 KNN算法即K-临近算法,采用测量不同特征值之间的距离的方法进行分类. 以二维情况举例:         假设一条样本含有两个特征.将这两种特征进行数值化,我们就可以假设这两种特种分别为二维坐标系中的横轴和纵轴,将一个样本以点的形式表示在坐标系中.这样,两个样本直接变产生了空间距离,假设两点之间越接近越可能属于同一类的样本.如果我们有一个待分类数据,我们计算该点与样本库中的所有点的距离,取前K个距离最近的点,以这K个中出现次数最多的分类作为待分类样本的分类.这样就是KNN算法.…
这篇其实应该作为机器学习的第一篇笔记的,但是在刚开始学习的时候,我还没有用博客记录笔记的打算.所以也就想到哪写到哪了. 你在网上搜索机器学习系列文章的话,大部分都是以KNN(k nearest neighbors)作为第一篇入门的,因为这个算法实在是太简单了.简单到其实没啥可说的. 问题:已知正方形和三角形两种分类,现在来了个圆,问:应该归到正方形更合适还是三角形更合适? 算法的思想很朴素,假设我们有一个M*N的矩阵(M个样本,每个样本有N个特征).当我们来了一个新的样本test,我们要去判断这…
kNN算法笔记 标签(空格分隔): 机器学习 kNN是什么 kNN算法是k-NearestNeighbor算法,也就是k邻近算法.是监督学习的一种.所谓监督学习就是有训练数据,训练数据有label标好(也就是分类分好的).kNN的思路是,对于需要测试的数据,把它和训练集中的每个数据都进行距离计算,距离最近的前k个结果中,所对应的label出现次数最多的,就是这个测试数据所属的label(类别). kNN一般步骤 按照<machine learning in action>一书中的通用步骤走一遍…
本文申明:本系列的所有实验数据都是来自[美]Peter Harrington 写的<Machine Learning in Action>这本书,侵删. 一案例导入:玛利亚小姐最近寂寞了,然后她就准备在一个在线社交网站搞网恋,但是凡是都有一个选择,按照她以往的经验,她接触了三种人: 1:不喜欢的人 2:魅力一般的人 3:特别有魅力的人 但是啊,尽管发现了这三类人,但是她还是无法甄别她究竟喜欢哪种人.所以她就求助我们,如果给她当这个月老.---------那我们就把这个实践叫做月老实践吧. 二案…
前言 Hello ,everyone. 我是小花.大四毕业,留在学校有点事情,就在这里和大家吹吹我们的狐朋狗友算法---KNN算法,为什么叫狐朋狗友算法呢,在这里我先卖个关子,且听我慢慢道来. 一 KNN算法简介 KNN(k-nearest neighbor的缩写)又叫最近邻算法.是1968年由Cover和Hart提出的一种用于分类和回归的无母数统计方法.什么叫无母统计方法呢,这里作个补充:无母统计方法又称非参数统计学,是统计学的一个分支,适用于母群体情况未明,小样本,母群体分布不为常态也不易转…
阅读对象:了解指示函数,了解训练集.测试集的概念. 1.简介 knn算法是监督学习中分类方法的一种.所谓监督学习与非监督学习,是指训练数据是否有标注类别,若有则为监督学习,若否则为非监督学习.所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类(加权),就把该输入实例分类到这个类中. 最初的近邻法是由Cover和Hart于1968年提出的,随后得到理论上深入的分析与研究,是非参数法中最重要的方法之一,它在论文Nearest…
#coding:utf-8 import numpy as np import operator def classify(intX,dataSet,labels,k): ''' KNN算法 ''' dataSetSize =dataSet.shape[0] ##numpy 中shape[0]返回数组的行数,shape[1]返回列数 ##构建计算矩阵 ##intX横向重复dataSetSize次,纵向重复1次 ##例如intX=([1,2])--->([[1,2],[1,2],[1,2],[1,…