ONNX 实时graph优化方法】的更多相关文章

ONNX 实时graph优化方法 ONNX实时提供了各种图形优化来提高模型性能.图优化本质上是图级别的转换,从小型图简化和节点消除,到更复杂的节点融合和布局优化. 图形优化根据其复杂性和功能分为几个类别(或级别).可以在线或离线执行.在联机模式下,优化在执行推断之前完成,而在脱机模式下,实时将优化的图形保存到磁盘.ONNX实时提供Python.C++.C++和C API,启用不同的优化级别,并在脱机与在线模式之间进行选择. 下面将详细介绍优化级别.在线/离线模式以及控制它们的各种API. 图优化…
iredmine的linux服务器mysql性能优化方法与问题排查方案     问题定位:   客户端工具: 1. 浏览器inspect-tool的network timing工具分析   2. 浏览器查看 response header, 分析http server 与 web server.       服务器工具:   0. nmon 查看各类系统负载, rrdtool 查看网络状况.   1. uptime看cpu负载;    free看内存;  mem ; cat /proc/memi…
基于TensorRT车辆实时推理优化 Optimizing NVIDIA TensorRT Conversion for Real-time Inference on Autonomous Vehicles 自动驾驶系统使用各种神经网络模型,这些模型要求在GPU上进行极其精确和高效的计算.Zoox是一家全新开发robotaxis的初创公司,充分利用了NVIDIA硬盘的高性能.节能计算功能.最近,Zoox在旧金山发布了一个一小时的全自动驾驶,详细展示了他们的AI堆栈. 与TensorFlow相比,…
CUDA优化的最终目的是:在最短的时间内,在允许的误差范围内完成给定的计算任务.在这里,“最短的时间”是指整个程序运行的时间,更侧重于计算的吞吐量,而不是单个数据的延迟.在开始考虑使用GPU和CPU协同计算之前,应该先粗略的评估使用CUDA是否能达到预想的效果,包括以下几个方面: 精度:目前GPU的单精度性能要远远超过双精度性能,整数乘法.求模.求余等运算的指令吞吐量也较为有限.在科学计算中,由于需要处理的数据量巨大,往往采用双精度或者四精度才能获得可靠的结果,目前的Tesla架构还不能很好的满…
本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,这里涉及的不多,这部分可以参考:淘宝Ken Wu同学的博客. 1. 表的设计 1.1 Pre-Creating Regions 默认情况下,在创建HBase表的时候会自动创建一个region分区,当导入数据的时候,所有的HBase客户端都向这一个region写数据,直到这个region足够大了才进行切分.一种可以加快批量写入速度的方法是通过预先创建一些空的regions,这样当数据写入H…
在项目中,随着时间的推移,数据量越来越大,程序的某些功能性能也可能会随之下降,那么此时我们不得不需要对之前的功能进行性能优化.如果优化方案不得当,或者说不优雅,那可能将对整个系统产生不可逆的严重影响. 此篇博主为大家分享一些根据自己多年的大数据分布式工作经验总结出优化的方案. 1.实时sql优化:就是将分析出来耗时的sql进行重写.拆分成多次查询后数据重组.去掉sql函数等等:sql能干的事情,程序肯定能干,且程序运行的性能一般情况会快很多,而且web服务器可以部署很多台:优点:可实现快速优化,…
原文链接:HBase性能优化方法总结(一):表的设计 本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客. 下面是本文总结的第一部分内容:表的设计相关的优化方法. 1. 表的设计 1.1 Pre-Creating Regions 默认情况下,在创建HBase表的时候会自动创建一个region分区,当导入数据的时候,所有的HBase客户端都向这一个region写数据,直到这个region足够大了才进行切分…
转自:http://www.cnblogs.com/panfeng412/archive/2012/03/08/hbase-performance-tuning-section2.html 本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客. 下面是本文总结的第二部分内容:写表操作相关的优化方法. 2. 写表操作 2.1 多HTable并发写 创建多个HTable客户端用于写操作,提高写数据的吞吐量,一…
本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客. 下面是本文总结的第三部分内容:读表操作相关的优化方法. 3. 读表操作 3.1 多HTable并发读 创建多个HTable客户端用于读操作,提高读数据的吞吐量,一个例子: static final Configuration conf = HBaseConfiguration.create();static final String table_lo…
1. 深度学习流程简介 1)一次性设置(One time setup)          -激活函数(Activation functions) - 数据预处理(Data Preprocessing) - 权重初始化(Weight Initialization) - 正则化(Regularization:避免过拟合的一种技术) - 梯度检查(Gradient checking) 2)动态训练(Training dynamics)          - 跟踪学习过程 (Babysitting th…