tensorflow 导入gfile模型文件】的更多相关文章

with tf.gfile.GFile(os.path.join(self.model_dir, 'ner_model.pb'), 'rb') as f: graph_def = self.tf.GraphDef() graph_def.ParseFromString(f.read()) input_map = {"input_ids:0": self.input_ids, 'input_mask:0': self.input_mask} # 这就是我们要获取的op self.pred…
stlloadertest.html: <!DOCTYPE html> <html lang="en"> <head> <title>three.js webgl - STL</title> <script src="build/three.js"></script> <script src="js/loaders/STLLoader.js"><…
由题目就可以看出,本节内容分为三部分,第一部分就是如何将训练好的模型持久化,并学习模型持久化的原理,第二部分就是如何将CKPT转化为pb文件,第三部分就是如何使用pb模型进行预测. 一,模型持久化 为了让训练得到的模型保存下来方便下次直接调用,我们需要将训练得到的神经网络模型持久化.下面学习通过TensorFlow程序来持久化一个训练好的模型,并从持久化之后的模型文件中还原被保存的模型,然后学习TensorFlow持久化的工作原理和持久化之后文件中的数据格式. 1,持久化代码实现 TensorF…
在这篇 TensorFlow 教程中,我们将学习如下内容: TensorFlow 模型文件是怎么样的? 如何保存一个 TensorFlow 模型? 如何恢复一个 TensorFlow 模型? 如何使用一个训练好的模型进行修改和微调? 1. TensorFlow 模型文件 在你训练完一个神经网络之后,你可能需要将这个模型保存下来,在后续实验中使用或者进行生产部署.那么,TensorFlow 模型文件长什么样呢?TensorFlow 模型主要包含我们已经训练好的网络设计(计算图)和网络参数.因此,T…
假如想要在ARM板上用tensorflow lite,那么意味着必须要把PC上的模型生成tflite文件,然后在ARM上导入这个tflite文件,通过解析这个文件来进行计算. 根据前面所说,tensorflow的所有计算都会在内部生成一个图,包括变量的初始化,输入定义等,那么即便不是经过训练的神经网络模型,只是简单的三角函数计算,也可以生成一个tflite模型用于在tensorflow lite上导入.所以,这里我就只做了简单的sin()计算来跑一编这个流程. 生成tflite模型 这部分主要是…
tensorflow  python创建模型,训练模型,得到.pb模型文件后,用c++ api进行预测 #include <iostream> #include <map> #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/image_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #…
查看tensorflow pb模型文件的节点信息: import tensorflow as tf with tf.Session() as sess: with open('./quantized_model.pb', 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) print graph_def 效果: # ... node { name: "FullyConnected/BiasAdd&qu…
下载最新的的tensorflow源码. 1.配置 tflite 文件转换所需环境 安装 bazel 编译工具 https://docs.bazel.build/versions/master/install.html bazel build 出现问题: 图片来自https://github.com/tensorflow/tensorflow/issues/29053 解决方法: 在WORKSPACE中加入: 图片来自https://github.com/bazelbuild/rules_dock…
TF的模型文件 标签(空格分隔): TensorFlow Saver tensorflow模型保存函数为: tf.train.Saver() 当然,除了上面最简单的保存方式,也可以指定保存的步数,多长时间保存一次,磁盘上最多保有几个模型(将前面的删除以保持固定个数),如下: 创建saver时指定参数: saver = tf.train.Saver(savable_variables, max_to_keep=n, keep_checkpoint_every_n_hours=m) 其中: sava…
写在前面: 上周微调一个文本检测模型seglink,将特征提取层进行冻结,只训练分类回归层,然而查看tensorboard发现里面有histogram显示模型各个参数分布,看了目前这个训练模型参数分布压根就看不懂,很想知道我的预训练模型的参数分布是怎么个情况,训练了一天了,模型的参数分布较预训练的模型参数有啥变化没有,怎么办呢? 利用tf.summary将模型参数分布在tensorboard可视化: 导入需要的库  设置模型文件夹路径 import TensorFlow as tf from t…