概率图模型 基于R语言 这本书中的第一个R语言程序 prior <- c(working =0.99,broken =0.01) likelihood <- rbind(working = c(good=0.99,bad=0.01),broken =c(good=0.6,bad=0.4)) data <- c("bad","bad","bad","bad") bayes <- function(prio…
记得2014年曾经写过一个Unity3D的游戏开发初探系列,收获了很多好评和鼓励,不过自那之后再也没有用过Unity,因为没有相关的需求让我能用到.目前公司有一个App开发的需求,想要融合一下AR到App中以便为客户提供更好的体验,因此我开始了一些调研和学习,会依次总结一些文章出来与各位分享.此外,也希望能给更多的.NET&.NET Core开发者看到用C#语言开发AR应用的场景,有更多的人使用C#开发应用程序. 一.理清VR.AR与MR的概念 1.1 VR 所谓VR,就是Virtual Rea…
判断ori_data[,1]中是否存在元素a: a %in% ori_data[,1] 如果存在返回 true,否则返回 false    …
package com.fs.test; public class HelloWorld { public void aMethod() { } public static void main(String[] args) { System.out.print("Hello world"); } }…
C 语言实例 - 字符串中各种字符计算 C 语言实例 C 语言实例 计算字符串中的元音.辅音.数字.空白符. 实例 #include <stdio.h> int main() { ]; int i, vowels, consonants, digits, spaces; vowels = consonants = digits = spaces = ; printf("输入一个字符串: "); scanf("%[^\n]", line); ; line[…
1. 解释性语言和编译性语言 1.1 定义 1.2 Python 属于编译型还是解释型? 1.3 收获 2. 动态类型语言 2.1 定义 2.2 比较 2. 动态语言(动态编程语言) 3.1 定义 3.2 Python 动态语言的体现 3.3 __slots__() 1. 解释性语言和编译性语言 1.1 定义 计算机是不能够识别高级语言的,所以当我们运行一个高级语言程序的时候,就需要一个"翻译机"来从事把高级语言转变成计算机能读懂的机器语言的过程.这个过程分成两类,一类是编译,一类是解…
下载地址:点我 编辑推荐 <学通C语言的24堂课>:用持续激励培养良好习惯以良好习惯铸就伟大梦想——致亲爱的读者朋友在开始学习<学通C语言的24堂课>的同时,强烈建议读者朋友同时阅读并践行<世界上最伟大的推销员>(奥格曼狄诺著)<学通C语言的24堂课>,该书书名像是写给推销员的书,其实适合所有渴望成功的人们,当然也适合渴望成为优秀程序员的读者朋友.该书是在全世界范围内影响巨大的励志类著作之一,它振奋人心,激励斗志,改变了无数人的命运.成千上万的人们盛赞从该书…
1.在throw语句,即自定义的抛出异常语句后面的代码并不会执行,会提示错误,编译器并不可以正常编译. 2.若在一个条件语句中抛出一个异常,程序可以编译,但不会运行(dead code). 3.若在一段代码前有异常抛出,并且这个异常被try...catch所捕获,但此时catch语句并没有抛出新的异常,这段代码可以执行. 4.在try语句中如果发生异常,那么将直接转到catch语句,然后到finally语句,即在try语句块发生异常后的部分并不会执行!…
Tomcat那些事儿 https://mp.weixin.qq.com/s?__biz=MzI3MTEwODc5Ng==&mid=2650860016&idx=2&sn=5490d13566300698fd4599d7250e279c    再有人问你Netty是什么,就把这篇文章发给他 原创: 陈彩华 Hollis 1周前 本文基于Netty4.1展开介绍相关理论模型,使用场景,基本组件.整体架构,知其然且知其所以然,希望给大家在实际开发实践.学习开源项目提供参考.这是一篇万字长…
R语言作为BI中ETL的工具,增删改 R语言提供了强大的R_package与各种数据库进行数据交互. 外加其强大数据变换清洗函数,为ETL提供一条方便快捷的道路. RODBC ROracal RMysql Rmongodb http://mirrors.ustc.edu.cn/CRAN/web/packages/rmongodb/vignettes/rmongodb_cheat_sheet.pdf step1 新建连接con,并查看其信息 library(RODBC) con<-odbcConn…
R语言中的线性判别分析_r语言 线性判别分析 在R语言中,线性判别分析(Liner Discriminant Analysis,简称LDA),依靠软件包MASS中有线性判别函数lqa()来实现.该函数有三种调用格式: 1)当对象为数据框data.frame时 lda(x,grouping,prior = propotions,tol = 1.0e-4,method,CV = FALSE,nu,-) 2) 当对象为公式Formula时 lda(formula,data,-,subnet,na.ac…
目的: 1. 计算自定义模序在所有蛋白质的匹配位点和次数 2. 输出超过阈值的蛋白质序列到Hit_sequences.fasta 3. Hit_sequences.fasta中序列用小写字母,匹配用大写字母 4. 返回一个数据框,内容包存储ID.注释行(anno)括--.长度(len).匹配位置(Position),匹配次数(Hits),相应序列(tag) 一.问题思考: 1. 如何快速计算匹配位点 2. 输出文件如何构建 >序列ID(ACCESSION) 序列内容…
1. 在matlab中将数据保存到*.mat 文件夹 save("data.mat","data","label")#将data和label两个变量保存到data.mat文件夹中 2.在R语言中安装R.matlab包 install.packages('R.matlab') 3.读取*.mat 文件中的数据 library(R.matlab) ob<-readMat("data.mat")# 返回的是一个列表,通 $进行…
1. 从贝叶斯方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括贝叶斯方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界的真实变化而随机修正,我对世界永远保持开放的态度. 1763年,民间科学家Thomas Bayes发表了一篇名为<An essay towards solving a problem in the doctrine of chances>的论文, 这篇论文发表后,在当时并未产生多少影响,但是在20…
http://blog.csdn.net/pipisorry/article/details/51461878 概率图模型Graphical Models简介 完全通过代数计算来对更加复杂的模型进行建模和求解.然而,我们会发现,使用概率分布的图形表示进行分析很有好处.这种概率分布的图形表示被称为概率图模型( probabilistic graphical models ).这些模型提供了几个有用的性质:• 它们提供了一种简单的方式将概率模型的结构可视化,可以用于设计新的模型.• 通过观察图形,我…
深度学习 vs. 概率图模型 vs. 逻辑学 摘要:本文回顾过去50年人工智能(AI)领域形成的三大范式:逻辑学.概率方法和深度学习.文章按时间顺序展开,先回顾逻辑学和概率图方法,然后就人工智能和机器学习的未来走向做些预测. [编者按]在上个月发表博客文章<深度学习 vs. 机器学习 vs. 模式识别>之后,CMU博士.MIT博士后及vision.ai联合创始人Tomasz Malisiewicz这一次带领我们回顾50年来人工智能领域三大范式(逻辑学.概率方法和深度学习)的演变历程.通过本文我…
这篇文章给大家讲Obj模型里一些基本功能的完善,包含Cg着色语言,矩阵转换,光照,多重纹理,法线贴图的运用. 在上篇中,我们用GLSL实现了基本的phong光照,这里用Cg着色语言来实现另一钟Blinn-phong光照模型,平常我们说语言只是手段,关键是怎么运用,这个用在如一些高级编程语言上,我们或多或少有不同想法,但是在着色语言上,我认为太对了.因语法都是基于C,C++来的,并且去除很多高级特性,可以说语法都是简单到了差不多了,关键在于他内置的一些传递参数的区别上,下来让我们用Cg着色器语言来…
一.ML方法分类:          产生式模型和判别式模型 假定输入x,类别标签y         -  产生式模型(生成模型)估计联合概率P(x,y),因可以根据联合概率来生成样本:HMMs         - 判别式模型(判别模型)估计条件概率P(y|x),因为没有x的知识,无法生成样本,只能判断分类:SVMs,CRF,MEM 一个举例:   (1,0), (1,0), (2,0), (2, 1) 产生式模型: p(x,y): P(1, 0) = 1/2, P(1, 1) = 0 , P(…
1.概率图模型 概率图模型是一类用图来表达变量相关关系的概率模型,它以图为表示工具,最常见的是用一个结点表示一个或一组随机变量,结点之间的边表示变量间的概率相关关系.概率图模型可大致分为两类:第一类是使用有向无环图表示变量间的依赖关系,称为有向图模型或贝叶斯网,第二类是使用无向图表示变量间的相关关系,称为无向图模型或马尔科夫网. 2.马尔科夫系列 马尔科夫过程和马尔科夫链: 马尔科夫过程:随机过程中,有一类具有“无后效性性质”,即当随机过程在某一时刻to所处的状态已知的条件下,过程在时刻t>to…
写在前面的话 按照正常的顺序,本文应该先讲一些线性回归的基本概念,比如什么叫线性回归,线性回规的常用解法等.但既然本文名为<从一个R语言案例学会线性回归>,那就更重视如何使用R语言去解决线性回归问题,因此本文会先讲案例. 线性回归简介 如下图所示,如果把自变量(也叫independent variable)和因变量(也叫dependent variable)画在二维坐标上,则每条记录对应一个点.线性回规最常见的应用场景则是用一条直线去拟和已知的点,并对给定的x值预测其y值.而我们要做的就是找出…
除了精确推理之外,我们还有非精确推理的手段来对概率图单个变量的分布进行求解.在很多情况下,概率图无法简化成团树,或者简化成团树后单个团中随机变量数目较多,会导致团树标定的效率低下.以图像分割为例,如果每个像素的label都是随机变量,则图中会有30W个随机变量(30W像素的小型相机).且这30W个随机变量相互之间耦合严重(4邻接,多回环),采用团树算法无法高效的获得单个像素label的可能值.所以,在精确推理之外,我们使用非精确推理的手段对节点的概率分布进行估计. 1.Loopy 置信传播 BP…
在前三周的作业中,我构造了概率图模型并调用第三方的求解器对器进行了求解,最终获得了每个随机变量的分布(有向图),最大后验分布(双向图).本周作业的主要内容就是自行编写概率图模型的求解器.实际上,从根本上来说求解器并不是必要的.其作用只是求取边缘分布或者MAP,在得到联合CPD后,寻找联合CPD的最大值即可获得MAP,对每个变量进行边缘分布求取即可获得边缘分布.但是,这种简单粗暴的方法效率极其低下,对于MAP求取而言,每次得到新的evidance时都要重新搜索CPD,对于单个变量分布而言,更是对每…
前两周的作业主要是关于Factor以及有向图的构造,但是概率图模型中还有一种更强大的武器——双向图(无向图.Markov Network).与有向图不同,双向图可以描述两个var之间相互作用以及联系.描述的方式依旧是factor.本周的作业非常有实际意义——基于马尔科夫模型的图像文字识别系统(OCR) 图像文字识别系统(OCR)在人工智能中有着非常重要的应用.但是受到图像噪声,手写体变形,连笔等影响基于图像的文字识别系统比较复杂.PGM的重要作用就是解决那些测量过程复杂,测量结果不一定对,连续测…
SparkR (R on Spark) 概述 SparkDataFrame 启动: SparkSession 从 RStudio 来启动 创建 SparkDataFrames 从本地的 data frames 来创建 SparkDataFrames 从 Data Sources(数据源)创建 SparkDataFrame 从 Hive tables 来创建 SparkDataFrame SparkDataFrame 操作 Selecting rows(行), columns(列) Groupin…
本文由云+社区发表 作者:腾讯技术工程 导语:最近几年来,深度学习在推荐系统领域中取得了不少成果,相比传统的推荐方法,深度学习有着自己独到的优势.我们团队在QQ看点的图文推荐中也尝试了一些深度学习方法,积累了一些经验.本文主要介绍了一种用于推荐系统召回模块的深度学习方法,其出处是Google在2016年发表于RecSys的一篇用于YouTube视频推荐的论文.我们在该论文的基础上做了一些修改,并做了线上AB测试,与传统的协同召回做对比,点击率等指标提升明显. 为了系统的完整性,在介绍主模型前,本…
基于335X平台的UBOOT中交换芯片驱动移植 一.软硬件平台资料 1.开发板:创龙AM3359核心板,网口采用RMII形式. 2.UBOOT版本:U-Boot-2016.05,采用FDT和DM. 3.交换芯片MARVELL的88E6321. 4.参考文章:本博客基于335X的UBOOT网口驱动分析. 二.移植主要步骤 1.准备工作: (1).必须熟悉U-Boot-2016.05中的网口驱动构架,熟悉其中各个网口设备结构体的意义,网口初始化流程.重点详细分析常规基于phydev的驱动初始化的过程…
作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. so far till now, 我还没见到过将CRF讲的个明明白白的.一个都没.就不能不抄来抄去吗?我打算搞一个这样的版本,无门槛理解的.——20170927 陆陆续续把调研学习工作完成了,虽然历时有点久,现在put上来.评论里的同学也等不及了时不时催我,所以不敢怠慢啊…… 总…
声明:本文转载自http://www.sigvc.org/bbs/thread-728-1-1.html,个人感觉是很好的PGM理论综述,高屋建瓴的总结了PGM的主要分支和发展趋势,特收藏于此. “概率模型与计算机视觉”林达华美国麻省理工学院(MIT)博士   上世纪60年代, Marvin Minsky 在MIT让他的本科学生 Gerald Jay Sussman用一个暑假的时间完成一个有趣的Project: “link a camera to a computer and get the c…
贝叶斯.概率分布与机器学习 转自:http://www.cnblogs.com/LeftNotEasy/archive/2010/09/27/1837163.html  本文由LeftNotEasy原创,可以转载,但请保留出处和此行,如果有商业用途,请联系作者 wheeleast@gmail.com 一. 简单的说贝叶斯定理: 贝叶斯定理用数学的方法来解释生活中大家都知道的常识 形式最简单的定理往往是最好的定理,比如说中心极限定理,这样的定理往往会成为某一个领域的理论基础.机器学习的各种算法中使…
1.典型的数据分析过程可以总结为一下图形: 注意,在模型建立和验证的过程中,可能需要重新进行数据清理和模型建立. 2.R语言一般用 <- 作为赋值运算符,一般不用 = ,原因待考证.用->也可以. 3. age <- c(,,,,,,,,,) weight <- c(4.4,5.3,7.2,5.2,8.5,7.3,6.0,10.4,10.2,6.1) mean(weight) sd(weight) cor(age,weight) plot(age,weight) 上面这一段代码是基…