Probability和Likelihood的区别】的更多相关文章

Bayes for Beginners: Probability and Likelihood 好好看,非常有用. 以前死活都不理解Probability和Likelihood的区别,为什么这两个东西的条件反一下就相等. 定义: Probability是指在固定参数的情况下,事件的概率,必须是0-1,事件互斥且和为1. 我们常见的泊松分布.二项分布.正态分布的概率密度图描述的就是这个. Likelihood是指固定的结果,我们的参数的概率,和不必为1,不必互斥,所以只有ratio是有意义的. 至…
From: https://alexanderetz.com/2015/04/15/understanding-bayes-a-look-at-the-likelihood/ Reading note. Much of the discussion in psychology surrounding Bayesian inference focuses on priors. Should we embrace priors, or should we be skeptical? When are…
1. uncertainty aleatoric uncertainty 偶然不确定性 epistemic uncertainty 认知不确定性 2. probability VS likelihood Pr(data|distribution); L(distribution|data); The likelihood function is unnormalized probability distribution describing uncertainty related to \tit…
Common sense reduced to computation - Pierre-Simon, marquis de Laplace (1749–1827) Inventor of Bayesian inference 贝叶斯方法的逻辑十分接近人脑的思维:人脑的优势不是计算,在纯数值计算方面,可以说几十年前的计算器就已经超过人脑了. 人脑的核心能力在于推理,而记忆在推理中扮演了重要的角色,我们都是基于已知的常识来做出推理.贝叶斯推断也是如此,先验就是常识,在我们有了新的观测数据后,就可以…
2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会有概率 贝叶斯的基础就是条件概率,条件概率的核心就是可能性空间的缩小,获取了新的信息就是个可能性空间缩小的过程 贝叶斯定理的核心就是,先验*似然=后验,有张图可以完美可视化这个定理 只要我们能得到可靠的先验或似然,任意一个,我们就能得到更可靠的后验概率 最近又在刷一个Coursera的课程:Baye…
网易公开课,监督学习应用.梯度下降 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 线性回归(Linear Regression) 先看个例子,比如,想用面积和卧室个数来预测房屋的价格 训练集如下 首先,我们假设为线性模型,那么hypotheses定义为 , 其中x1,x2表示面积和#bedrooms两个feature 那么对于线性模型,更为通用的写法为 其中把θ和X看成向量,并且x0=1,就可以表示成最后那种,两个向量相乘的形式 那…
Probabilistic interpretation,概率解释  解释为何线性回归的损失函数会选择最小二乘 表示误差,表示unmodeled因素或随机噪声,真实的y和预测出来的值之间是会有误差的,因为我们不可能考虑到所有的影响结果的因素,比如前面的例子,我们根据面积和卧室的个数来预测房屋的价格,但是影响房屋价格的因素其实很多,而且有很多随机因素,比如买卖双方的心情,而根据中心极限定理,大量独立的随机变量的平均值是符合正态分布或高斯分布的  所以这里对于由大量unmodeled因素导致的误差的…
probability VS likelihood: https://zhuanlan.zhihu.com/p/25768606 http://sdsy888.me/%E9%9A%8F%E7%AC%94-Writing/2018/%E4%BC%BC%E7%84%B6%EF%BC%88likelihood%EF%BC%89%E5%92%8C%E6%A6%82%E7%8E%87%EF%BC%88probability%EF%BC%89%E7%9A%84%E5%8C%BA%E5%88%AB%E4%B8…
Generative Graph Models 第八章传统的图生成方法> The previous parts of this book introduced a wide variety of methods for learning representations of graphs. In this final part of the book, we will discuss a distinct but closely related task: the problem of > g…
PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if the posterior distributions p(θ|x) are in the same family as the prior probability distributionp(θ), the prior and posterior are then called conjugate d…
1.Probability mass functions (pmf) and Probability density functions (pdf) pmf 和 pdf 类似,但不同之处在于所适用的分布类型 PMF -> <font color='green'>discrete distributions</font>, while pdf -> <font color='green'>continuous distributions</font>…
似然与概率 https://blog.csdn.net/u014182497/article/details/82252456 在统计学中,似然函数(likelihood function,通常简写为likelihood,似然)是一个非常重要的内容,在非正式场合似然和概率(Probability)几乎是一对同义词,但是在统计学中似然和概率却是两个不同的概念.概率是在特定环境下某件事情发生的可能性,也就是结果没有产生之前依据环境所对应的参数来预测某件事情发生的可能性,比如抛硬币,抛之前我们不知道最…
学贝叶斯方法时绕不过去的一个问题,现在系统地总结一下. 之前过于纠结字眼,似然和概率到底有什么区别?以及这一个奇妙的对等关系(其实连续才是f,离散就是p). 似然函数 | 似然值 wiki:在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性. 这里我们讨论的范围已经界定了,那就是在指定模型下(比如二项分布),我们观测数据和可能的模型参数之间的关系. (传统的贝叶斯定理的适用范围很广,是高度的总结推广,在似然函数里就不要过于推广了) 似然函数在直觉上就很好理解了,L(…
1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少.很罕有的情况下才出现:那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒…
Abstract Bayesian networks are a powerful probabilistic representation, and their use for classification has received considerable attention. However, they tend to perform poorly when learned in the standard way. This is attributable to a mismatch be…
Let $X=\{x_1,x_2,...,x_n\}$ be a finite set and let $P$ be a probability function defined on all subsets of $X$ with $P(\{x_i\})=a_i,~1\leq i \geq n,~0<a_i<1$ for i and $\sum^{n}_{i=1}=1$. $X$ together with $P$ is a discrete (finite) probability dis…
转自:http://blog.sina.com.cn/s/blog_4ee13c2c01016div.html1,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少.…
2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta distribution(Conjugate Prior of Bernoulli distribution) The parameters a and b are often called hyperparameters because they control the distribution of…
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:11:56 开始吧,先不要发言了,先讲PRML第二章Probability Distributions.今天的内容比较多,还是边思考边打字,会比较慢,大家不要着急,上午讲不完下午会接着讲. 顾名思义,PRML第二章Probability Distributions的主要内容有:伯努利分布. 二项式 –beta共轭分布.多项式分布 -狄利克雷共轭分布 .高斯分布 .频率派和贝叶斯派…
Basics of Probability Probability density function (pdf). Let X be a continuous random variable. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that any two numbers a and b with That is, the probabi…