全连接神经网络的概念我就不介绍了,对这个不是很了解的朋友,可以移步其他博主的关于神经网络的文章,这里只介绍我使用基本工具实现全连接神经网络的方法. 所用工具: numpy == 1.16.4 matplotlib 最新版 我的思路是定义一个layer类,在这个类里边构建传播的前向传播的逻辑,以及反向传播的逻辑,然后在构建一个model类,在model类里边,将layer类中的对象拼接,就可以得到我们想要的模型. 在Layers类的传播中,在Dense层中,我是按照公式output = X*w+b…
""" 利用numpy实现一个两层的全连接网络 网络结构是:input ->(w1) fc_h -> relu ->(w2) output 数据是随机出的 """ import numpy as np #维度和大小参数定义 batch_size = 64 input_dim = 1000 output_dim = 10 hidden_dim = 100 # 数据虚拟 (x,y) # 每行是一条数据 输入是64*1000,1000…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(一).MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(二)中,采用全连接神经网络(784-300-10),分别用非深度学习框架和基于pytorch实现,训练结果相当. 这里采用卷积神经网络(CNN)中著名的LeNet-5网…
在上一篇博客<TensorFlow之DNN(一):构建“裸机版”全连接神经网络>中,我整理了一个用TensorFlow实现的简单全连接神经网络模型,没有运用加速技巧(小批量梯度下降不算哦)和正则化方法,通过减小batch size,也算得到了一个还可以的结果. 那个网络只有两层,而且MINIST数据集的样本量并不算太大.如果神经网络的隐藏层非常多,每层神经元的数量巨大,样本数量也巨大时,可能出现三个问题: 一是梯度消失和梯度爆炸问题,导致反向传播算法难以进行下去: 二是在如此庞大的网络中进行训…
博客断更了一周,干啥去了?想做个聊天机器人出来,去看教程了,然后大受打击,哭着回来补TensorFlow和自然语言处理的基础了.本来如意算盘打得挺响,作为一个初学者,直接看项目(不是指MINIST手写数字识别这种),哪里不会补哪里,这样不仅能学习到TensorFlow和算法知识,还知道如何在具体项目中应用,学完后还能出来一个项目.是不是要为博主的想法双击666?图样! 现在明白了什么叫基础不牢地动山摇,明白了什么叫步子太大直接就放弃,明白了我是适合循序渐进的学习,暂时不适合对着项目直接干. 同时…
初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构建CNN[待学习] 全连接+各种优化[待学习] BN层[待学习] 先解释以下MNIST数据集,训练数据集有55,000 条,即X为55,000 * 784的矩阵,那么Y为55,000 * 10的矩阵,每个图片是28像素*28像素,带有标签,Y为该图片的真实数字,即标签,每个图片10个数字,1所在位置…
本节涉及: 身份证问题 单层网络的模型 多层全连接神经网络 激活函数 tanh 身份证问题新模型的代码实现 模型的优化 一.身份证问题 身份证号码是18位的数字[此处暂不考虑字母的情况],身份证倒数第2个数字代表着性别. 奇数,代表男性,偶数,代表女性 假设事先不知道这个规则,但收集了足够多的身份证及相应的性别信息.希望通过神经网络来找到这个规律 分析: 显然,身份证号可以作为神经网络的输入,而持有者的性别即是神经网络计算结果的目标值,所以,我们有完备的训练数据 性别有男女,显然是一个二分类问题…
tensorflow中使用mnist数据集训练全连接神经网络 ——学习曹健老师“人工智能实践:tensorflow笔记”的学习笔记, 感谢曹老师 前期准备:mnist数据集下载,并存入data目录: 文件列表:四个文件,分别为训练和测试集数据 Four files are available on 官网  http://yann.lecun.com/exdb/mnist/ : train-images-idx3-ubyte.gz:  training set images (9912422 by…
1.准备数据 把数据放进txt文件中(数据量大的话,就写一段程序自己把数据自动的写入txt文件中,任何语言都能实现),数据之间用逗号隔开,最后一列标注数据的标签(用于分类),比如0,1.每一行表示一个训练样本.如下图所示. 其中前三列表示数据(特征),最后一列表示数据(特征)的标签.注意:标签需要从0开始编码! 2.实现全连接网络 这个过程我就不多说了,如何非常简单,就是普通的代码实现,本篇博客的重点在于使用自己的数据,有些需要注意的地方我在后面会做注释.直接上代码 #隐含层参数设置 in_un…
包含一个隐含层的全连接神经网络结构如下: 包含一个隐含层的神经网络结构图 以MNIST数据集为例,以上结构的神经网络训练如下: #coding=utf-8 from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf # 加载数据 mnist = input_data.read_data_sets('/home/workspace/python/tf/data/mnist', one_hot=…
Anaconda安装Keras: conda install keras 安装完成: 在Jupyter Notebook中新建并执行代码: import keras from keras.datasets import mnist # 从keras中导入mnist数据集 from keras.models import Sequential # 导入序贯模型 from keras.layers import Dense # 导入全连接层 from keras.optimizers import…
import torch import numpy as np import torch.nn as nn from torch.autograd import Variable import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms batch_size = 64 learning_rate = 1e-2 num_epoche…
前馈神经网络 前馈神经网络(feedforward neural network)是最朴素的神经网络,通常我们所说的前馈神经网络有两种,一种叫反向传播网络(Back propagation Networks)也可简称为BP网络:一种叫做径向基函数神经网络(RBF Network) 网络结构 前馈神经网络的结构不固定,一般神经网络包括输入层.隐层和输出层,下面的图一的神经网络由两层,每层4个节点.第二个神经网络有两个隐层,第一层5个节点,第二层3个节点,最后一层输出层只有一个节点.神经网络有很多种…
论文地址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 这篇论文使用全卷积神经网络来做语义上的图像分割,开创了这一领域的先河.看了一天这个论文,结合网上别的其他资料,对这篇论文比较好的解读有: 1 https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html 2 https://zhu…
PyTorch全连接ReLU网络 1.PyTorch的核心是两个主要特征: 一个n维张量,类似于numpy,但可以在GPU上运行 搭建和训练神经网络时的自动微分/求导机制 本文将使用全连接的ReLU网络作为运行示例.该网络将有一个单一的隐藏层,并将使用梯度下降训练,通过最小化网络输出和真正结果的欧几里得距离,来拟合随机生成的数据. 2.张量 2.1 热身: Numpy 在介绍PyTorch之前,将首先使用numpy实现网络. Numpy提供了一个n维数组对象,以及许多用于操作这些数组的函数.Nu…
# -*- coding: utf-8 -*- """ Created on Sun Mar 4 09:21:41 2018 @author: markli """ import numpy as np; def ReLU(x): return max(0,x); def logistic(x): return 1/(1 + np.exp(-x)); def logistic_derivative(x): return logistic(x)*(…
基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 TensorFlow 和 Keras 等框架的出现大大降低了编程的复杂度,而迁移学习的思想也允许我们利用现有的模型加上少量数据和训练时间,取得不俗的效果. 这篇文章将示范如何利用迁移学习训练一个能从图片中分类不同种类的花的模型,它在五种花中能达到 80% 以上的准确度(比瞎蒙高了 60% 哦),而且只需要普…
为什么resnet的输入是一定的? 因为resnet最后有一个全连接层.正是因为这个全连接层导致了输入的图像的大小必须是固定的. 输入为固定的大小有什么局限性? 原始的resnet在imagenet数据集上都会将图像缩放成224×224的大小,但这么做会有一些局限性: (1)当目标对象占据图像中的位置很小时,对图像进行缩放将导致图像中的对象进一步缩小,图像可能不会正确被分类 (2)当图像不是正方形或对象不位于图像的中心处,缩放将导致图像变形 (3)如果使用滑动窗口法去寻找目标对象,这种操作是昂贵…
<全连接的BP神经网络> 本文主要描述全连接的BP神经网络的前向传播和误差反向传播,所有的符号都用Ng的Machine learning的习惯.下图给出了某个全连接的神经网络图. 1前向传播 1.1前向传播 分别计算第l层神经元的输入和输出: 1.1.1偏执项为1时 向量整体形式: 分量形式: 1.1.2偏执项为b时 向量整体形式: 分量形式: 1.2网络误差 1.2.1偏执项为1时 对于某一个输入样本,它的输出为,它所对应的真实输出应该为,那么,该样本对应的误差E为     (1) 注意到输…
目录 写在前面 全连接层与Softmax回顾 加权角度 模板匹配 几何角度 Softmax的作用 总结 参考 博客:blog.shinelee.me | 博客园 | CSDN 写在前面 这篇文章将从3个角度:加权.模版匹配与几何来理解最后一层全连接+Softmax.掌握了这3种视角,可以更好地理解深度学习中的正则项.参数可视化以及一些损失函数背后的设计思想. 全连接层与Softmax回顾 深度神经网络的最后一层往往是全连接层+Softmax(分类网络),如下图所示,图片来自StackExchan…
使用之前那个格式写法到后面层数多的话会很乱,所以编写了一个函数创建层,这样看起来可读性高点也更方便整理后期修改维护 #全连接层函数 def fcn_layer( inputs, #输入数据 input_dim, #输入层神经元数量 output_dim,#输出层神经元数量 activation =None): #激活函数 W = tf.Variable(tf.truncated_normal([input_dim,output_dim],stddev = 0.1)) #以截断正态分布的随机初始化…
//2019.10.08神经网络与全连接层1.logistics regression逻辑回归的思想是将数据利用激活函数sigmoid函数转换为0-1的概率,然后定义一定的阈值0.5,大于阈值则为一类,小于阈值则为另一类.它主要用来解决的是二分类问题,也可以通过一定的变形解决多分类的问题.2.对于逻辑回归其实质是分类算法,为什称之为回归,主要是因为其优化的函数类似于回归问题的loss函数,而将其称之为逻辑主要是因为利用了sigmoid函数. 图3.回归问题和分类问题的loss函数是不一样:(1)…
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid.softmax.tanh.relu.leakyrelu.elu.selu.softplus):https://www.cnblogs.com/xiximayou/p/127130…
之前在用预训练的ResNet的模型进行迁移训练时,是固定除最后一层的前面层权重,然后把全连接层输出改为自己需要的数目,进行最后一层的训练,那么现在假如想要只是把 最后一层的输出改一下,不需要加载前面层的权重,方法如下: model = torchvision.models.resnet18(pretrained=False) num_fc_ftr = model.fc.in_features model.fc = torch.nn.Linear(num_fc_ftr, 224) model =…
如下图:(图片来自StackExchange) 强化说明全连接层: 1.通常将网络最后一个全连接层的输入,即上面的x \mathrm{x}x,视为网络从输入数据提取到的特征. 2. 强化说明softmax:…
一.介绍 实验内容 内容包括用 PyTorch 来实现一个卷积神经网络,从而实现手写数字识别任务. 除此之外,还对卷积神经网络的卷积核.特征图等进行了分析,引出了过滤器的概念,并简单示了卷积神经网络的工作原理. 知识点 使用 PyTorch 数据集三件套的方法 卷积神经网络的搭建与训练 可视化卷积核.特征图的方法 二.数据准备 引入相关包 import torch import torch.nn as nn from torch.autograd import Variable import t…
文章目录 一.项目背景 二.数据处理 1.标签与特征分离 2.数据可视化 3.训练集和测试集 三.模型搭建 四.模型训练 五.完整代码 一.项目背景数据集cnn_train.csv包含人类面部表情的图片的label和feature.在这里,面部表情识别相当于一个分类问题,共有7个类别.其中label包括7种类型表情: 一共有28709个label,说明包含了28709张表情包嘿嘿.每一行就是一张表情包48*48=2304个像素,相当于4848个灰度值(intensity)(0为黑, 255为白)…
一.导论 在图像语义分割领域,困扰了计算机科学家很多年的一个问题则是我们如何才能将我们感兴趣的对象和不感兴趣的对象分别分割开来呢?比如我们有一只小猫的图片,怎样才能够通过计算机自己对图像进行识别达到将小猫和图片当中的背景互相分割开来的效果呢?如下图所示: 而在2015年出来的FCN,全卷积神经网络完美地解决了这个问题,将曾经mean IU(识别平均准确度)只有百分之40的成绩提升到了百分之62.2(在Pascal VOC数据集上跑的结果,FCN论文上写的),像素级别识别精确度则是90.2%.这已…
想要尝试一下将resnet18最后一层的全连接层改成卷积层看会不会对网络效果和网络大小有什么影响 1.首先先对train.py中的更改是: train.py代码可见:pytorch实现性别检测 # model_conv.fc = nn.Linear(fc_features, 2)这是之前的写法 model_conv.fc = nn.Conv2d(fc_features, 2, 1) print(model_conv.fc) 但是运行的时候出错: 1) RuntimeError: Expected…
今天来仔细讲一下卷基层和全连接层训练参数个数如何确定的问题.我们以Mnist为例,首先贴出网络配置文件: name: "LeNet" layer { name: "mnist" type: "Data" top: "data" top: "label" data_param { source: "examples/mnist/mnist-train-leveldb" backend: L…