每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:缺失值是数据清洗过程中非常重要的问题(其他方法可见:R语言︱异常值检验.离群点分析.异常值处理),笔者在进行mice包的多重插补过程中遇到相当多的问题. 大致的步骤简介如下: 缺失数据集--MCMC估计插补成几个数据集--每个数据集进行插补建模(glm.lm模型)--将这些模型整合到一起(pool)--评价插补模型优劣(模型系数的t统…
好多同学跑来问,用spss的时候使用多重插补的数据集,怎么选怎么用?是不是简单的选一个做分析?今天写写这个问题. 什么时候用多重插补 首先回顾下三种缺失机制或者叫缺失类型: 上面的内容之前写过,这儿就不给大家翻译了,完全随机缺失,缺失量较小的情况下你直接扔掉或者任你怎么插补都可以,影响不大的.随机缺失可以用多重插补很好地处理:非随机缺失,任何方法都没得救的,主分析做完之后自觉做敏感性分析才是正道:这个我好像在之前的文章中给大家解释过原因. When it is plausible that da…
0 引言 对于一些数据集,不可避免的出现缺失值.对缺失值的处理非常重要,它是我们能否继续进行数据分析的关键,也是能否继续大数据分析的数据基础. 1 缺失值分类 在对缺失数据进行处理前,了解数据缺失的机制和形式是十分必要的.将数据集中不含缺失值的变量称为完全变量,数据集中含有缺失值的变量称为不完全变量.从缺失的分布来将缺失可以分为完全随机缺失,随机缺失和完全非随机缺失. 完全随机缺失(missing completely at random,MCAR):指的是数据的缺失是完全随机的,不依赖于任何不…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言︱文本挖掘套餐包之--XML+tm+SnowballC包 笔者寄语:文本挖掘.情感分析是目前非结构数据非常好用.有效的分析方式. 先针对文本挖掘这个套餐包做个简单了解.一般来说一个完整的文本挖掘解决流程是: 网页爬取数据--数据格式转化(分隔)--建立语料库--词频去噪--提取词干--创建文档-词频矩阵--后续分析(聚类.词云等) XML…
#缺失值 an=c(1,2,NA) is.na(an) #会形成一个布尔向量 布尔向量就是一群像(FALSE,FALSE,TURE)这样的向量. 关于缺失值还有一个函数:complete.cases函数 该函数与is.na的区别在于: 1.输出数据格式不同.is.na按照数据框格式形成一个(FALSE,FALSE,TURE)列,而complete.cases形成是一个数列向量,不再是按照数据框格式: 2.输出数据内容不同.complete.cases输出的逻辑向量与is.na正好相反,is.na…
mean(!is.na(mat))可以计算数据完整度(没有缺失值的) mean(!is.na(mat))>0.9,90%完整可以使用 # 缺失值的位置研究as.vector(attributes(na.omit(mat))$na.action) which(rowSums(is.na(mat))!=0) which(complete.cases(mat)==F) # 缺失数据的图形可视化VIM包 library(VIM) aggr(mat,numbers=T,prop= F) matrixplo…
平时都是几百万的数据量,这段时间公司中了个大标,有上亿的数据量. 现在情况是数据已经在数据库里面了,需要用R分析,但是完全加载不进来内存. 面对现在这种情况,R提供了ff, ffbase , ETLUtils  的解决方案. 它可以很简单的加载,转换数据库的数据进入R内存,ETLUtils 包现在已经扩展了read.odbc.ffdf 方法用来查询Oracle, MySQL, PostgreSQL & sqlite databases.. 下面我们就来展示一个例子. require(ETLUti…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:异常值处理一般分为以下几个步骤:异常值检测.异常值筛选.异常值处理. 其中异常值检测的方法主要有:箱型图.简单统计量(比如观察极值) 异常值处理方法主要有:删除法.插补法.替换法. 提到异常值不得不说一个词:鲁棒性.就是不受异常值影响,一般是鲁棒性高的数据,比较优质. 一.异常值检验 异常值大概包括缺失值.离群值.重复值,数据不一致.…
在数据挖掘的过程中,数据预处理占到了整个过程的60% 脏数据:指一般不符合要求,以及不能直接进行相应分析的数据 脏数据包括:缺失值.异常值.不一致的值.重复数据及含有特殊符号(如#.¥.*)的数据 数据清洗:删除原始数据集中的无关数据.重复数据.平滑噪声数据.处理缺失值.异常值等 缺失值处理:删除记录.数据插补和不处理 主要用到VIM和mice包 install.packages(c("VIM","mice")) 1.处理缺失值的步骤 步骤: (1)识别缺失数据:…
本文对应<R语言实战>第15章:处理缺失数据的高级方法 本文仅在书的基础上进行简单阐述,更加详细的缺失数据问题研究将会单独写一篇文章. 处理缺失值的一般步骤: 识别缺失数据: 检查导致数据缺失的原因: 删除包含缺失值的实例或用合理的数值代替(插补)缺失值. 缺失数据的分类: 完全随机缺失(MCAR):某变量的缺失数据与其他任何观测或未观测的变量都不相关: 随机缺失(MAR):某变量上的缺失数据与其他观测变量相关,与它自己的未观测值不相关: 非随机缺失(NMAR):不属于MCAR或MAR的变量.…