图像变换之Census变换】的更多相关文章

图像的Census变换 Census变换属于非参数图像变换的一种,它能够较好地检测出图像中的局部结构特征,如边缘.角点特征等.传统Census变换的基本思想是:在图像区域定义一个矩形窗口,用这个矩形窗口遍历整幅图像.选取中心像素作为参考像素,将矩形窗口中每个像素的灰度值与参考像素的灰度值进行比较,灰度值小于或等于参考值的像素标记为0,大于参考值的像素标记为1,最后再将它们按位连接,得到变换后的结果,变换后的结果是由0和1组成的二进制码流.Census变换的实质是将图像像素的灰度值编码成二进制码流…
1.立体匹配算法主要可分为两大类:基于局部约束和基于全局约束的立体匹配算法. (一)基于全局约束的立体匹配算法:在本质上属于优化算法,它是将立体匹配问题转化为寻找全局能量函数的最优化问题,其代表算法主要有图割算法.置信度传播算法和协同优化算法等.全局算法能够获得较低的总误匹配率,但算法复杂度较高,很难满足实时的需求,不利于在实际工程中使用. (二)基于局部约束的立体匹配算法:主要是利用匹配点周围的局部信息进行计算,由于其涉及到的信息量较少,匹配时间较短,因此受到了广泛关注,其代表算法主要有 SA…
对SSE的学习总算迈出了第一步,用2天时间对双线性插值的代码进行了优化,现将实现的过程梳理以下,算是对这段学习的一个总结. 1. 什么是SSE 说到SSE,首先要弄清楚的一个概念是SIMD(单指令多数据流,Single Instruction Multiple Data),是一种数据并行技术,能够在一条指令中同时对多个数据执行运算操作,增加处理器的数据吞吐量.SIMD特别的适用于多媒体应用等数据密集型运算. 1.1 历史 1996年Intel首先推出了支持MMX的Pentium处理器,极大地提高…
原文地址:http://blog.csdn.net/byxdaz/article/details/5972759 GDI+(Graphics Device Interface Plus图形设备接口加)是Windows XP和Windows Server 2003操作系统的子系统,也是.NET框架的重要组成部分,负责在屏幕和打印机上绘制图形图像和显示信息. GDI+不但在功能上比GDI 要强大很多,而且在代码编写方面也更简单,因此会很快成为Windows图形图像程序开发的首选. 一.GDI+的特点…
GDI+(Graphics Device Interface Plus图形设备接口加)是Windows XP和Windows Server 2003操作系统的子系统,也是.NET框架的重要组成部分,负责在屏幕和打印机上绘制图形图像和显示信息. GDI+不但在功能上比GDI 要强大很多,而且在代码编写方面也更简单,因此会很快成为Windows图形图像程序开发的首选. 一.              GDI+的特点和新增功能 GDI+与GDI一样,都具有设备无关性.应用程序的程序员可利用GDI+这样…
转自 http://www.cnblogs.com/dupuleng/articles/4055020.html 博客园 首页 新随笔 联系 管理 订阅 随笔- 1  文章- 185  评论- 14  仿射变换详解 warpAffine   今天遇到一个问题是关于仿射变换的,但是由于没有将仿射变换的具体原理型明白,看别人的代码看的很费解,最后终于在师兄的帮助下将原理弄明白了,我觉得最重要的是理解仿射变换可以看成是几种简单变换的复合实现, 具体实现形式即将几种简单变换的变换矩阵M相乘,这样就很容易…
基于YoloV3的实时摄像头记牌器 github:https://github.com/aoru45/cards_recognition_recorder_pytorch 最终效果 数据准备 数据获取 从摄像头拍摄各种牌型的视频各20秒,不采用人工打标签,而是通过识别出牌的边缘,将牌经过仿射变换矫正,根据牌的实际宽高以及标注位置的实际宽高得到标注位置.通过随机生成背景图片,并且将牌在背景中随机旋转和平移,去掉标注部分被遮挡的生成图片,同时将label也做同样的变换,完成数据集的获取. 先定义好将…
本文旨在总结一次从头开始训练CNN进行图像分类的完整过程(猫狗大战为例,使用Keras框架),免得经常遗忘.流程包括: 从Kaggle下载猫狗数据集: 利用python的os.shutil库,制作训练集和测试集: 快速开发一个小模型作为基准:(只要效果比随机猜略好即可,通常需要有一点过拟合) 根据基准表现进行改进,比如针对过拟合的图像增强.正则化等. 1 从Kaggle下载猫狗数据集 具体可参考 2 制作数据集 从Kaggle下载的猫狗数据集大概八百多兆,其中训练集包含25000张猫狗图,两类数…
  半全局立体匹配算法Semi-Global Matching,SGM由学者Hirschmüller在2005年所提出1,提出的背景是一方面高效率的局部算法由于所基于的局部窗口视差相同的假设在很多情况下并不成立导致匹配效果较差:而另一方面全局算法虽然通过二维相邻像素视差之间的约束(如平滑性约束)而得到更好的匹配效果,但是对内存的占用量大,速度慢.为了结合两者的优点,同时避免两者的缺点,SGM算法依旧采用全局框架,但是在计算能量函数最小化的步骤时使用高效率的一维路径聚合方法来代替全局算法中的二维最…
  由于代价计算步骤只考虑了局部的相关性,对噪声非常敏感,无法直接用来计算最优视差,所以SGM算法通过代价聚合步骤,使聚合后的代价值能够更准确的反应像素之间的相关性,如图1所示.聚合后的新的代价值保存在与匹配代价空间C同样大小的聚合代价空间S中,且元素位置一一对应. 图1:代价聚合前后视差图示意图   为了获得较好的匹配效果,SGM算法依旧采用全局立体匹配算法的思路,即全局能量最优化策略,简单来说就是寻找每个像素的最优视差使得整张影像的全局能量函数最小.全局能量函数的定义如公式1所示: 式1 全…