首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Kruscal(最小生成树)算法模版
】的更多相关文章
Kruscal(最小生成树)算法模版
;//最大点数 ;//最大边数 int n,m;//n表示点数,m表示边数 struct edge{int u,v,w;} e[maxm];//u,v,w分别表示该边的两个顶点和权值 bool cmp(edge a,edge b) { return a.w<b.w; } int fa[maxn];//因为需要用到并查集来判断两个顶点是否属于同一个连通块 int find(int x) { if(x==fa[x]) return x; else return fa[x]=find(fa[x]);…
[算法模版]Prim-完全图最小生成树
[算法模版]Prim-完全图最小生成树 众所周知,对于常用的Kruskal算法,算法复杂度为\(O(m \log m)\).这在大多数场景下已经够用了.但是如果遇到及其稠密的完全图,Prim算法就能更胜一筹. Prim算法也可以使用很多数据结构进行优化.但是对于完全图来说,这写优化都无足轻重.暴力的Prim算法的\(O\left(n^{2}+m\right)\)就足够了. Prim算法也很简单.就是每次考虑把一个加入一个点到已经建成的生成树.可以证明如果选择一个不在当前生成树,且离当前生成树最近…
最小生成树算法(Prim,Kruskal)
边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以把边上的权值解释为线路的造价.则最小生成树表示使其造价最小的生成树. 构造网的最小生成树必须解决下面两个问题: 1.尽可能选取权值小的边,但不能构成回路: 2.选取n-1条恰当的边以连通n个顶点: MST性质:假设G=(V,E)是一个连通网,U是顶点V的一个非空子集.若(u,v)是一条具有最小权值的…
Prim 最小生成树算法
Prim 算法是一种解决最小生成树问题(Minimum Spanning Tree)的算法.和 Kruskal 算法类似,Prim 算法的设计也是基于贪心算法(Greedy algorithm). Prim 算法的思想很简单,一棵生成树必须连接所有的顶点,而要保持最小权重则每次选择邻接的边时要选择较小权重的边.Prim 算法看起来非常类似于单源最短路径 Dijkstra 算法,从源点出发,寻找当前的最短路径,每次比较当前可达邻接顶点中最小的一个边加入到生成树中. 例如,下面这张连通的无向图 G,…
Kruskal 最小生成树算法
对于一个给定的连通的无向图 G = (V, E),希望找到一个无回路的子集 T,T 是 E 的子集,它连接了所有的顶点,且其权值之和为最小. 因为 T 无回路且连接所有的顶点,所以它必然是一棵树,称为生成树(Spanning Tree),因为它生成了图 G.显然,由于树 T 连接了所有的顶点,所以树 T 有 V - 1 条边.一张图 G 可以有很多棵生成树,而把确定权值最小的树 T 的问题称为最小生成树问题(Minimum Spanning Tree).术语 "最小生成树" 实际上是…
网络流之最大流Dinic算法模版
/* 网络流之最大流Dinic算法模版 */ #include <cstring> #include <cstdio> #include <queue> using namespace std; ; const int inf = 0x3f3f3f3f; struct { int c,f;//c为边的容量,f为边的容量 }edge[maxn][maxn]; int dis[maxn]; int v,e; bool bfs()//利用bfs进行分层处理,当汇点无法分层时得…
最小生成树算法 prim kruskal两种算法实现 HDU-1863 畅通工程
最小生成树 通俗解释:一个连通图,可将这个连通图删减任意条边,仍然保持连通图的状态并且所有边权值加起来的总和使其达到最小.这就是最小生成树 可以参考下图,便于理解 原来的图: 最小生成树(蓝色线): 最小生成树主要有prim和kruskal两种算法 其中prim可以用优先队列实现,kruskal使用并查集来实现 两种算法针对于不同的数据规模有不同的效率,根据不同的题目可以选择相应的算法. 经典最小生成树算法应用的案例如HDU-1863这个问题 概述: 省政府"畅通工程"的目标是使全省任…
笔试算法题(50):简介 - 广度优先 & 深度优先 & 最小生成树算法
广度优先搜索&深度优先搜索(Breadth First Search & Depth First Search) BFS优缺点: 同一层的所有节点都会加入队列,所以耗用大量空间: 仅能非递归实现: 相比DFS较快,空间换时间: 适合广度大的图: 空间复杂度:邻接矩阵O(N^2):邻接表O(N+E): 时间复杂度:O(V+E): DFS优缺点: 无论是系统栈还是用户栈保存的节点数都只是树的深度,所以空间耗用小: 有递归和非递归实现: 由于有大量栈操作(特别是递归实现时候的系统调用),执行速度…
[算法系列之二十七]Kruskal最小生成树算法
简单介绍 求最小生成树一共同拥有两种算法,一个是就是本文所说的Kruskal算法,还有一个就是Prime算法. 在具体解说Kruskal最小生成树算法之前,让我们先回想一下什么是最小生成树. 我们有一个带权值的图,我们要求找到一个全部生成树中具有最小权值的生成树.例如以下图所看到的,T是图G的生成树.但不是具有最小权值的生成树. 我们能够把他们想象成一组岛屿和连接它们的可能的桥梁.当然修桥是非常昂贵和费时的,所以我们必需要知道建设什么样的桥梁去连接各个岛.只是有一个重要的问题.建设这样一组连接全…
[算法模版]Tarjan爷爷的几种图论算法
[算法模版]Tarjan爷爷的几种图论算法 前言 Tarjan爷爷发明了很多图论算法,这些图论算法有很多相似之处(其中一个就是我都不会).这里会对这三种算法进行简单介绍. 定义 强连通(strongly connected): 在一个有向图\(G\)里,设两个点a, b 发现,由\(a\)有一条路可以走到\(b\),由\(b\)又有一条路可以走到\(a\),我们就叫这两个顶点(a,b)强连通. 强连通图: 如果 在一个有向图\(G\)中,每两个点都强连通,我们就叫这个图,强连通图. 分量:把一个…