BZOJ 2844 高斯消元 线性基】的更多相关文章

思路: //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int inf=0x7fffffff,mod=10086; int n,a[100050],q,flag=1,rec[66],ans; void Gauss(){ for(int i=30,j;~i;i--){ for(j=flag;j<=n;j++)if(a…
高斯消元 & 线性基 本来说不写了,但还是写点吧 [update 2017-02-18]现在发现真的有好多需要思考的地方,网上很多代码感觉都是错误的,虽然题目通过了 [update 2017-02-19]加入线性基 [update 2017-03-31]完善内容,改用markdown Gauss Elimination 高斯消元(Gaussian elimination)是求解线性方程组的一种算法,它也可用来求矩阵的秩,以及求可逆方阵的逆矩阵. 它通过逐步消除未知数来将原始线性系统转化为另一个更…
[题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i]) swap(a[i],a[j]); if (!a[i]) {k=i-1; break;} D(j,30,0) if (a[i]>>j & 1){ b[i]=j; F(x,1,n) if (x!=i && a[x]>>j&1) a[x]^=a[i];…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4004 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示(1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备. 对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(…
高斯消元 其实开始只是想搞下线性基,,,后来发现线性基和高斯消元的关系挺密切就一块儿在这儿写了好了QwQ 先港高斯消元趴? 这个算法并不难理解啊?就会矩阵运算就过去了鸭,,, 算了都专门为此写个题解还是详细港下趴,,, 就每次选定一个未知数,通过加减消元使得所有方程中只有一个方程中它的系数不为0 然后这么一直做下去最后就会得到一个,这样的东西 a是系数b是方程右边的那个玩意儿 然后就输出b/a就成了,,还挺简单的是不是x就模拟了一个加减消元 然后就放代码趴 #include<bits/stdc+…
题目链接 题意 给出n个数,问这些数的某些数xor后第k小的是谁. 思路 高斯消元求线性基. 学习地址 把每个数都拆成二进制,然后进行高斯消元,如果这个数字这一位(列)有1,那么让其他数都去异或它,消掉这一列的1,使得最后得到的矩阵某一行如果那一列有1的话,那么其他行是不会有1的(就是线性基). 最后得到一个行数row,代表总共有row个1. 这个证明还没想通,直接用了. 如果得到的row == n的话,代表每一个数都有一个1,那么是取不到0的,这个时候只能得到 2^row - 1 个数,否则其…
4269: 再见Xor Description 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 我太愚蠢了连数组开小了以及$2^{31}$爆$int$都不造   线性基裸题啊.... #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #in…
4269: 再见Xor Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 131  Solved: 81[Submit][Status][Discuss] Description 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. Input 第一行一个正整数N. 接下来一行N个非负整数. Output 一行,包含两个数,最大值和次大值. Sample Input 3 3 5 6 Sa…
HDU 3949 XOR pid=3949" target="_blank" style="">题目链接 题意:给定一些数字,问任取几个异或值第k大的 思路:高斯消元搞基,然后从低位外高位去推算 代码: #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; const…
题意: 告诉你一个K维球体球面上的K+1个点问球心坐标. sol: 乍一看还以为是K维的二分答案然后判断距离...真是傻逼了...你看乱七八糟的题目做多了然后就会忘记最有用的基本计算... 我们可以看到,假设圆心O,根据他告诉我们的公式我们可以得到给出任意两个点和圆心的一个方程,这个方程有k个未知数,那么我们随意构造K个方程然后跑一跑高斯消元. 机械工业的线代还是挺清楚易懂的...每次枚举到一个主元行就把下面每一个都消了...恩...比较直观... 因为最后一个换行还PE了一发...有点醉= =…