强连通分量+poj2186】的更多相关文章

强连通分量:两个点能够互相连通. 算法分解:第一步.正向dfs全部顶点,并后序遍历 第二步,将边反向,从最大边dfs,构成强连通分量 标号最大的节点属于DAG头部,cmp存一个强连通分量的拓扑序. poj2186 解就是拓扑后的最后一个强连通分量 #include<cstdio> #include<algorithm> #include<vector> #include<iostream> #include<cstring> #include&l…
这里的Tarjan是基于DFS,用于求有向图的强联通分量. 运用了一个点dfn时间戳和low的关系巧妙地判断出一个强联通分量,从而实现一次DFS即可求出所有的强联通分量. §有向图中, u可达v不一定意味着v可达u.    相互可达则属于同一个强连通分量    (Strongly Connected Component, SCC) §有向图和它的转置的强连通分量相同 §所有SCC构成一个DAG(有向无环图) dfn[u]为节点u搜索的次序编号(时间戳),即首次访问u的时间 low[u]为u或u的…
题目问一个有向图所有点都能达到的点有几个. 先把图的强连通分量缩点,形成一个DAG,那么DAG“尾巴”(出度0的点)所表示的强连通分量就是解,因为前面的部分都能到达尾巴,但如果有多个尾巴那解就是0了,因为尾巴间达到不了.判断是否有多个尾巴,可以从最后一个强连通分量中的某一个点出发看能否在逆图上遍历完其他点. 因为用到了逆图,所以直接用Kosaraju算法. #include<cstdio> #include<cstring> #include<vector> #incl…
做这题主要是为了学习一下tarjan的强连通分量,因为包括桥,双连通分量,强连通分量很多的求法其实都可以源于tarjan的这种方法,通过一个low,pre数组求出来. 题意:给你许多的A->B ,B->C这样的喜欢的关系,A->B ,B->C也意味着A->C,最后问你被全部别的人喜欢的cow有多少个.如果不告诉你用强连通分量,感觉可能会绕的远一些,但是如果知道了这个思路其实是很显然的. 首先是跑出每个强连通分量,在这种情况下,原来的图就变成了一棵树,一棵有有向边的树,然后不难…
Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 23445   Accepted: 9605 Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M &l…
Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 35035   Accepted: 14278 Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M &…
Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 40234   Accepted: 16388 Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M &…
Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 27820   Accepted: 11208 Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M &…
题目链接:http://poj.org/problem?id=2186 题目大意: 每头牛都想成为牛群中的红人. 给定N头牛的牛群和M个有序对(A, B),(A, B)表示牛A认为牛B是红人: 该关系具有传递性,所以如果牛A认为牛B是红人,牛B认为牛C是红人,那么牛A也认为牛C是红人. 不过,给定的有序对中可能包含(A, B)和(B, C),但不包含(A, C). 求被其他所有牛认为是红人的牛的总数. 题目分析(引自 https://www.cnblogs.com/violet-acmer/p/…
题目链接:http://poj.org/problem?id=2186 题目大意: 每头牛都想成为牛群中的红人. 给定N头牛的牛群和M个有序对(A, B),(A, B)表示牛A认为牛B是红人: 该关系具有传递性,所以如果牛A认为牛B是红人,牛B认为牛C是红人,那么牛A也认为牛C是红人. 不过,给定的有序对中可能包含(A, B)和(B, C),但不包含(A, C). 求被其他所有牛认为是红人的牛的总数. 题目分析(引自 https://www.cnblogs.com/violet-acmer/p/…