(数论)51NOD 1073 约瑟夫环】的更多相关文章

题目链接 先说一下什么是约瑟夫环,转自:传送门 关于约瑟夫环问题,无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的.我们注意到原问题仅仅是要求出最后的胜利者的序号,而不是要读者模拟整个过程.因此如果要追求效率,就要打破常规,实施一点数学策略. 为了讨论方便,先把问题稍微改变一下,并不影响原意:问题描述:n个人(编号0~(n-1)),从0开始报数,报到(…
N个人坐成一个圆环(编号为1 - N),从第1个人开始报数,数到K的人出列,后面的人重新从1开始报数.问最后剩下的人的编号.例如:N = 3,K = 2.2号先出列,然后是1号,最后剩下的是3号.Input2个数N和K,表示N个人,数到K出列.(2 <= N, K <= 10^6)Output最后剩下的人的编号Input示例3 2Output示例3解: #include <stdio.h> int main() { int n, k; while (scanf_s("%d…
思路传送门 :http://blog.csdn.net/kk303/article/details/9629329 n里面挑选m个 可以递推从n-1里面挑m个 然后n-1里面的x 可以转换成 n里面的x 的公式 x = (x+m)%n; #include <bits/stdc++.h> using namespace std; int main () { int n,m; scanf("%d %d",&n ,&m); ; ;i <= n;i++) x…
1073 约瑟夫环  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 N个人坐成一个圆环(编号为1 - N),从第1个人开始报数,数到K的人出列,后面的人重新从1开始报数.问最后剩下的人的编号. 例如:N = 3,K = 2.2号先出列,然后是1号,最后剩下的是3号. Input 2个数N和K,表示N个人,数到K出列.(2 <= N, K <= 10^6) Output 最后剩下的人的编号 Input示例 3 2 Output示例 3 #inclu…
什么是约瑟夫环呢? 约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列. 我们用程序说话,实现约瑟夫环:eclipse jdk1.6 package code; import java.awt.PointerInfo; import java.util.Random; import java.util.Scanner…
最简单的约瑟夫环,虽然感觉永远不会考约瑟夫环,但数学正好刷到这部分,跳过去的话很难过 直接粘别人分析了 约瑟夫问题: 用数学方法解的时候需要注意应当从0开始编号,因为取余会等到0解. 实质是一个递推,n个人中最终存活下来的序号与n-1个人中存活的人的序号有一个递推关系式. 分析: 假设除去第k个人. 0, 1, 2, 3, ..., k-2, k-1, k, ..., n-1 //original sequence (1) 0, 1, 2, 3, ..., k-2,      , k, ...,…
约瑟夫环: 已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又出列:依此规律重复下去,直到圆桌周围的人全部出列. 例如:n = 9, k = 1, m = 5 [解答]出局人的顺序为5, 1, 7, 4, 3, 6, 9, 2, 8. int main()//约瑟夫环 { , m=,k=;//n是人数(编号1,2,……,x),m是出列号,k是起始人编号 , l=; ]; ;i<=;i++) {…
什么是约瑟夫环: 约瑟夫环(约瑟夫问题)是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为1的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又出列:依此规律重复下去,直到圆桌周围的人全部出列.通常解决这类问题时我们把编号从0~n-1,最后结果+1即为原问题的解. 创建一个全局临时表: create global temporary table temp(t_id int) on commit delete rows; 游标…
本文是通过例子学习C++的第七篇,通过这个例子可以快速入门c++相关的语法. 1.问题描述 回顾一下约瑟夫环问题:n 个人围坐在一个圆桌周围,现在从第 s 个人开始报数,数到第 m 个人,让他出局:然后从出局的下一个人重新开始报数,数到第 m 个人,再让他出局......,如此反复直到所有人全部出局为止. 上一篇我们通过数组.静态链表实现了约瑟夫环,具体参考: 通过例子进阶学习C++(六)你真的能写出约瑟夫环么 本文,我们进一步深入分析约瑟夫环问题,并通过c++模板库实现该问题求解,最后我们说明…
今天偶遇一道算法题 "约瑟夫环"是一个数学的应用问题:一群猴子排成一圈,按1,2,-,n依次编号.然后从第1只开始数,数到第m只,把它踢出圈,从它后面再开始数, 再数到第m只,在把它踢出去-,如此不停的进行下去, 直到最后只剩下一只猴子为止,那只猴子就叫做大王.要求编程模拟此过程,输入m.n, 输出最后那个大王的编号. 方法一:递归算法   1 function killMonkey($monkeys , $m , $current = 0){ 2 $number = count($m…