bzoj 2957: 楼房重建【线段树】】的更多相关文章

2957: 楼房重建 Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维平面上.小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.…
链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2957 思路: 用分块可以很简单的过掉,但是这道题也可以用线段树写. 分类讨论左区间最大值对右区间取值的影响,这样每次都只计算左右区间其中一个,复杂度就降成了logn. 实现代码: #include<bits/stdc++.h> using namespace std; #define ll long long #define lson l,m,rt<<1 #define r…
Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维平面上.小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的. 施工队的建造总共进行了M天.初始时,所有楼房都…
一个显而易见的结论是,这种数字的值是单调递增的.我们修改一个数只会对这个数后面的数造成影响.考虑线段树划分出来的若干线段. 这里有两种情况: 1.某个线段中的最大值小于等于修改的数,那么这个线段的贡献为0,无需处理 2.否则我们将这个线段分成两个并单独考虑,如果左侧的最大值大于修改的数,那么是不影响右侧的贡献的,只需递归处理左侧:否则就变成了第一种情况 那么我们就可以用线段树来解决这个问题了 # include <cstdio> # include <cstring> # incl…
传送门 题意:转换成斜率然后维护区间的上升序列(从区间第一个数开始的单调上升序列) 区间保存这个区间的最长序列的长度$ls$和最大值$mx$ 如何合并两个区间信息? 左区间一定选择,右区间递归寻找第一个大于左区间最大值$v$的位置 具体来看,如果右区间的左最大值$<v$那么左面不可能选递归右面 否则这个区间所选的右面一定选,减去左面的$ls$再递归左面 合并复杂度$O(logn)$,总复杂度$O(nlog^2n)$ #include <iostream> #include <cst…
传送门 线段树 //Twenty #include<cstdio> #include<cstdlib> #include<iostream> #include<algorithm> #include<cmath> #include<cstring> #include<queue> #include<vector> #define lc x<<1 #define rc x<<1|1 #de…
2957: 楼房重建 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3294  Solved: 1554[Submit][Status][Discuss] Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维平面上.小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和…
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2957 分析: 根据题意,就是比较斜率大小 只看一段区间的话,那么这段区间能看见的楼房数量就是这段区间的单调栈的大小 那么这题就是用线段树来维护这个单调栈 len[k]表示对于区间k来说单调栈的大小是多少 那么自底向上maintain(k)的时候,len[k]=len[lson]+find(rson,max[lson]) find(k,x)就是表示以数字x进去k区间,那么能走的步数是多少 那么…
题目链接  楼房重建 解题思路:我们可以把楼房的最高点的斜率计算出来.那么问题就转化成了实时查询x的个数,满足数列x的左边没有大于等于x的数. 我们可以用线段树维护 设t[i]为如果只看这个区间,可以看到的楼房数量有多少. f[i]为这个区间的x的最大值 更新的时候我们递归讨论. 计算t[i]时,区间的前一半直接套t[i << 1]的结果,但是后一半受前一半区间的最大值的影响,要分开求解. query(i, L, R, val)为当前区间中大于val的数的个数(val并不在这个区间内而在这个区…
总之就是找前面所有点的斜率都严格小于这个点的这样的点的个数 不管是询问还是修改都非常线段树啊,而且相当眼熟是不是和hotel有点像啊,大概就是区间内记一个len一个max,分别是当前区间答案和区间最大斜率,然后合并区间的时候用右区间递归,分情况讨论更新左区间 这样是两个log-- #include<iostream> #include<cstdio> using namespace std; const int N=100005; int n,m; double a[N]; str…
楼房重建 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=2957 Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维平面上.小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2957 线段树维护两个值:cnt 能看到的最多楼房数: mx 最大斜率数: 对于一段区间,从左子区间的角度出发来限制右子区间,得到总区间的 cnt 和 mx: 转移时关注新斜率和左右子区间最大斜率的关系即可. 代码如下: #include<iostream> #include<cstdio> #include<cstring> using namespace std…
题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维平面上.小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的. 施工队的建造总共进行了M天.初始时,所有楼房都还没有开始建造…
Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维平面上.小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的. 施工队的建造总共进行了M天.初始时,所有楼房都…
题目大意: 小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的. 施工队的建造总共进行了M天.初始时,所有楼房都还没有开始建造,它们的高度均为0.在第i天,建筑队将会将横坐标为Xi的房屋的高度变为Yi(高度可以比原来大—修建,也可以比原来小—拆除,甚至可以保持不变—建筑队这天什么事也没做).请你帮小A数数每天在建筑队完工之后…
题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维平面上.小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段 表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的. 施工队的建造总共进行了M天.初始时,所有楼房都还没有开始建…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2957 线段树维护原点到楼顶的斜率,可以知道答案就是从原点开始斜率递增的个数: 记录一个mx数组表示这一段上最大的斜率,二分,分类讨论,递归求解: 而且如果要取rs的长度,不是直接取tr[rs],而是总长度减去tr[ls],因为不能从右边一段的起点开始…… 代码如下: #include<iostream> #include<cstdio> #include<cstring…
题意 题目链接 Sol 别问我为什么发两遍 就是为了骗访问量 这个题的线段树做法,,妙的很 首先一个显然的结论:位置\(i\)能被看到当且仅当\(\frac{H_k}{k} < \frac{H_i}{i}, k < i\) 考虑直接维护区间\([l, r]\)的可以被看到的点. 因为只有单点修改,因此只需考虑如何合并两个区间即可 维护区间内\(\frac{H_i}{i}\)的最大值,设其为\(mx\) 首先左孩子的答案可以直接加上,考虑左孩子对右孩子的贡献,如果\(mx_{ls} > m…
题目链接 Solution 经典的一道线段树题,难点在于如何合并节点. 由于题目要求直线要求不相交,则斜率均大于前面的点即为答案. 所以以斜率为权值. 考虑线段树每一个节点维护两个值: \(Max\) 代表当前节点中的最大值. \(Sum\) 代表对于任意一个节点 \(i\) , 其中满足\(w_j>Max(w_{l[i]},w_{l[i]+1}...,w_{r[i]})\)的个数,其中 \(l[i]\),\(r[i]\) 指节点 \(i\) 所在的区间左右端点.\(w\)为斜率. 每一次插入一…
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2957 分析: 首先明确问题,对于每栋楼房的斜率K=H/X,问题就是问有多少个楼房的K比前面所有楼房的K都要大. 这题树套树当然可以,但是挺麻烦的,本渣觉得最简单就是分块…… 将N个楼房分成T块,不断维护每个块内楼房的可视序列,如一个块内楼房的高度分别为(3 1 4 2 6 7)那么这个块内楼房的可视序列就是(3 4 6 7)(注意不同的块内是不干扰的,如第一个块可视序列为(3 4 6),第二…
Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维平面上.小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的. 施工队的建造总共进行了M天.初始时,所有楼房都…
2957: 楼房重建 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1753  Solved: 841 Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维平面上.小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.…
Bzoj 2752 高速公路 (期望,线段树) 题目链接 这道题显然求边,因为题目是一条链,所以直接采用把边编上号.看成序列即可 \(1\)与\(2\)号点的边连得是. 编号为\(1\)的点.查询的时候把\(r - 1\)就好了. 这里的期望显然就是路径的平均值. 期望值: \[\dfrac{\sum_{i=l}^r\sum_{j=l}^{r}dis[i][j]}{C_{r-l+1}^2}\] 下面部分可以直接算出: 上面这一部分比较难维护. 考虑每一条边会被走过多少次. \[ans = \su…
BZOJ UOJ 以时间\(t\)为横坐标,位置\(p\)为纵坐标建坐标系,那每个机器人就是一条\(0\sim INF\)的折线. 用李超线段树维护最大最小值.对于折线分成若干条线段依次插入即可. 最好还是离线对时间离散化. 麻烦在写出来.. 复杂度\(O(c\log^2m+q\log m)\)? 以后李超树改用struct写了...学了一种写法好方便... //66516kb 5156ms #include <cstdio> #include <cctype> #include…
BZOJ 洛谷 首先可以把原序列\(A_i\)转化成差分序列\(B_i\)去做. 这样对于区间加一个等差数列\((l,r,a_0,d)\),就可以转化为\(B_{l-1}\)+=\(a_0\),\(B_r\)-=\((r-l)*d+a_0\),\(B_{l...r-1}\)+=\(d\). 对于查询,似乎只需要求区间\(b_i\)的连续段个数? 并不是,比如: \(A:\ 0\ 1\ 3\ 6\ 10\\B:\ \ \ 1\ 2\ 3\ 4\) 答案是\(3\)而不是\(4\),我们可以这样划分…
题目链接 https://www.luogu.org/problemnew/show/P4198 分析 一句话题意,一条数轴上有若干楼房,坐标为\(xi\)的楼房有高度\(hi\),那么它的斜率为\(hi/xi\),操作包含单元素高度修改,动态询问最长上升斜率序列个数 一开始想什么分治或是离线操作之类的,却因为水平低并不会做,看了题解居然发现就是线段树!看了一下感觉真妙啊,线段树真是个神奇的数据结构 线段树维护两个东西\(sum[now],mx[now]\); \(sum[now]\)是\(no…
题面 escription 黑客们通过对已有的病毒反编译,将许多不同的病毒重组,并重新编译出了新型的重组病毒.这种病毒的繁殖和变异能力极强.为了阻止这种病毒传播,某安全机构策划了一次实验,来研究这种病毒. 实验在一个封闭的局域网内进行.局域网内有n台计算机,编号为1~n.一些计算机之间通过网线直接相连,形成树形的结构.局域网中有一台特殊的计算机,称之为核心计算机.根据一些初步的研究,研究员们拟定了一个一共m步的实验.实验开始之前,核心计算机的编号为1,每台计算机中都有病毒的一个变种,而且每台计算…
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3123 题意: 思路:总的来说,查询区间第K小利用函数式线段树的减法操作.对于两棵树的合并,将节点少的树暴力插入到节点大的树上面.对于本题,首先,将输入的权值离散化,为已经给出的边建立函数式线段树.对于合并x,y,将y的父节点设为x,然后重新建立y为根的子树的函数式线段树.对于查询x,y,k,设其LCA为p,p的父节点为q,则x+y-p-q就是整个区间. struct node { in…
[题目描述 Description] 给一个 1 到 N 的排列{Ai},询问是否存在 1<=p1<p2<p3<p4<p5<…<pLen<=N(Len>=3),使得 Ap1,Ap2,Ap3,…ApLen 是一个等差序列. [输入描述 Input Description] 输入的第一行包含一个整数 T,表示组数. 下接 T 组数据,每组第一行一个整数 N,每组第二行为一个 1 到 N 的排列, 数字两两之间用空格隔开. [输出描述 Output Desc…
3747: [POI2015]Kinoman Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 553  Solved: 222[Submit][Status][Discuss] Description 共有m部电影,编号为1~m,第i部电影的好看值为w[i]. 在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部. 你可以选择l,r(1<=l<=r<=n),并观看第l,l+1,…,r天内所有的电影.如果同一部电影你观看多…