上篇文章 spark 源码分析之十八 -- Spark存储体系剖析 重点剖析了 Spark的存储体系.从本篇文章开始,剖析Spark作业的调度和计算体系. 在说DAG之前,先简单说一下RDD. 对RDD的整体概括 文档说明如下: RDD全称Resilient Distributed Dataset,即分布式弹性数据集.它是Spark的基本抽象,代表不可变的可分区的可并行计算的数据集. RDD的特点: 1. 包含了一系列的分区 2. 在每一个split上执行函数计算 3. 依赖于其他的RDD 4.…
引言 上篇 spark 源码分析之十九 -- DAG的生成和Stage的划分 中,主要介绍了下图中的前两个阶段DAG的构建和Stage的划分. 本篇文章主要剖析,Stage是如何提交的. rdd的依赖关系构成了DAG,DAGScheduler根据shuffle依赖关系将DAG图划分为一个一个小的stage.具体可以看 spark 源码分析之十九 -- DAG的生成和Stage的划分 做进一步了解. 紧接上篇文章 上篇文章中,DAGScheduler的handleJobSubmitted方法我们只…
在spark 源码分析之五 -- Spark内置RPC机制剖析之一创建NettyRpcEnv中,剖析了NettyRpcEnv的创建过程. Dispatcher.NettyStreamManager.TransportContext.TransportClientFactory.TransportServer.Outbox.Inbox等等基础的知识都已经在前面剖析过了. 可以参照如下文章做进一步了解. p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12…
本篇文章主要剖析Spark的内存管理体系. 在上篇文章 spark 源码分析之十四 -- broadcast 是如何实现的?中对存储相关的内容没有做过多的剖析,下面计划先剖析Spark的内存机制,进而进入内存存储,最后再剖析磁盘存储.本篇文章主要剖析内存管理机制. 整体介绍 Spark内存管理相关类都在 spark core 模块的 org.apache.spark.memory 包下. 文档对这个包的解释和说明如下: This package implements Spark's memory…
上篇spark 源码分析之十五 -- Spark内存管理剖析 讲解了Spark的内存管理机制,主要是MemoryManager的内容.跟Spark的内存管理机制最密切相关的就是内存存储,本篇文章主要介绍Spark内存存储. 总述 跟内存存储的相关类的关系如下: MemoryStore是负责内存存储的类,其依赖于BlockManager.SerializerManager.BlockInfoManager.MemoryManager. BlockManager是BlockEvictionHandl…
本篇文章主要剖析BlockManager相关的类以及总结Spark底层存储体系. 总述 先看 BlockManager相关类之间的关系如下: 我们从NettyRpcEnv 开始,做一下简单说明. NettyRpcEnv是Spark 的默认的RpcEnv实现,它提供了个Spark 集群各个节点的底层通信环境,可以参照文章 spark 源码分析之十二--Spark RPC剖析之Spark RPC总结 做深入了解. MemoryManager 主要负责Spark内存管理,可以参照 spark 源码分析…
spark 源码分析之十--Spark RPC剖析之TransportResponseHandler.TransportRequestHandler和TransportChannelHandler剖析 TransportResponseHandler分析 先来看类说明: Handler that processes server responses, in response to requests issued from a [[TransportClient]]. It works by tr…
这个Module通过建立一个MongoDbRepositoryBase<TEntity> 基类,封装了对MongoDb数据库的操作. 这个module通过引用MongoDB.Driver,MongoDB.Bson,MongoDB.Driver.Core,MongoDB.Driver.Legacy类库来操作MongoDb. 当项目不需要依赖于关系型数据库时,可以考虑引入MongoDB以及这个module. ABP.MongoDb模块涉及到的接口和类如下,结构清晰,简单. IAbpMongoDbM…
ABP对HangFire的集成主要是通过实现IBackgroundJobManager接口的HangfireBackgroundJobManager类完成的. HangfireBackgroundJobManager:实现了接口IBackgroundJobManager中的方法EnqueueAsync,通过HangfireBackgroundJob完成Enqueue.重写了BackgroundWorkerBase中的Start和WaitToStop方法. AbpHangfireConfigura…
对于过度动画如果要同时渲染整个列表时,可以使用transition-group组件. transition-group组件的props和transition组件类似,不同点是transition-group组件的props是没有mode属性的,另外多了以下两个props    tag                  标签名    moveClass      新增/移除元素时的过渡    ;如果未指定则默认会拼凑出name+"-move"这个格式的,一般很少用到,比较复杂的动画可以该…
摘要: 本文结合<Spring源码深度解析>来分析Spring 5.0.6版本的源代码.若有描述错误之处,欢迎指正. 经过前面几章的分析,相信大家已经对 Spring 中的容器功能有了简单的了解,在前面的章节中我们一直以 BeanFactory 接口以及它的默认实现类 XmlBeanFactory 为例进行分析,但是, Spring还提供了另一个接口 ApplicationContext,用于扩展 BeanFactory 现有的功能. ApplicationContext 和 BeanFact…
本篇文章主要剖析broadcast 的实现机制. BroadcastManager初始化 BroadcastManager初始化方法源码如下: TorrentBroadcastFactory的继承关系如下: BroadcastFactory An interface for all the broadcast implementations in Spark (to allow multiple broadcast implementations). SparkContext uses a Br…
原文网址: http://www.cnblogs.com/csdev Networkcomms 是一款C# 语言编写的TCP/UDP通信框架  作者是英国人  以前是收费的 目前作者已经开源  许可是:Apache License v2 开源地址是:https://github.com/MarcFletcher/NetworkComms.Net 用于处理接收到的二级制数据,生成相关的数据包,并进一步进行解析 namespace NetworkCommsDotNet.Connections { p…
如下,是 spark 源码分析系列的一些文章汇总,持续更新中...... Spark RPC spark 源码分析之五--Spark RPC剖析之创建NettyRpcEnv spark 源码分析之六--Spark RPC剖析之Dispatcher和Inbox.Outbox剖析 spark 源码分析之七--Spark RPC剖析之RpcEndPoint和RpcEndPointRef剖析 spark 源码分析之八--Spark RPC剖析之TransportContext和TransportClie…
引言 在上两篇文章 spark 源码分析之十九 -- DAG的生成和Stage的划分 和 spark 源码分析之二十 -- Stage的提交 中剖析了Spark的DAG的生成,Stage的划分以及Stage转换为TaskSet后的提交. 如下图,我们在前两篇文章中剖析了DAG的构建,Stage的划分以及Stage转换为TaskSet后的提交,本篇文章主要剖析TaskSet被TaskScheduler提交之后的Task的整个执行流程,关于具体Task是如何执行的两种stage对应的Task的执行有…
第一章.spark源码分析之RDD四种依赖关系 一.RDD四种依赖关系 RDD四种依赖关系,分别是 ShuffleDependency.PrunDependency.RangeDependency和OneToOneDependency四种依赖关系.如下图所示:org.apache.spark.Dependency有两个一级子类,分别是 ShuffleDependency 和 NarrowDependency.其中,NarrowDependency 是一个抽象类,它有三个实现类,分别是OneToO…
问题的提出 本篇文章将回答如下问题: 1.  spark任务在执行的时候,其内存是如何管理的? 2. 堆内内存的寻址是如何设计的?是如何避免由于JVM的GC的存在引起的内存地址变化的?其内部的内存缓存池回收机制是如何设计的? 3. 堆外和堆内内存分别是通过什么来分配的?其数据的偏移量是如何计算的? 4. 消费者MemoryConsumer是什么? 5. 数据在内存页中是如何寻址的? 单个任务的内存管理是由 org.apache.spark.memory.TaskMemoryManager 来管理…
TransportClient类说明 先来看,官方文档给出的说明: Client for fetching consecutive chunks of a pre-negotiated stream. This API is intended to allow efficient transfer of a large amount of data, broken up into chunks with size ranging from hundreds of KB to a few MB. …
上篇文章 spark 源码分析之十六 -- Spark内存存储剖析 主要剖析了Spark 的内存存储.本篇文章主要剖析磁盘存储. 总述 磁盘存储相对比较简单,相关的类关系图如下: 我们先从依赖类 DiskBlockManager 剖析. DiskBlockManager 文档说明如下: Creates and maintains the logical mapping between logical blocks and physical on-disk locations. One block…
Spark是现在很流行的一个基于内存的分布式计算框架,既然是基于内存,那么自然而然的,内存的管理就是Spark存储管理的重中之重了.那么,Spark究竟采用什么样的内存管理模型呢?本文就为大家揭开Spark内存管理模型的神秘面纱. 我们在<Spark源码分析之七:Task运行(一)>一文中曾经提到过,在Task被传递到Executor上去执行时,在为其分配的TaskRunner线程的run()方法内,在Task真正运行之前,我们就要构造一个任务内存管理器TaskMemoryManager,然后…
原文链接:Spark源码分析:多种部署方式之间的区别与联系(1) 从官方的文档我们可以知道,Spark的部署方式有很多种:local.Standalone.Mesos.YARN.....不同部署方式的后台处理进程是不一样的,但是如果我们从代码的角度来看,其实流程都差不多. 从代码中,我们可以得知其实Spark的部署方式其实比官方文档中介绍的还要多,这里我来列举一下: 1.local:这种方式是在本地启动一个线程来运行作业: 2.local[N]:也是本地模式,但是启动了N个线程: 3.local…
DAGScheduler的架构其实非常简单, 1. eventQueue, 所有需要DAGScheduler处理的事情都需要往eventQueue中发送event 2. eventLoop Thread, 会不断的从eventQueue中获取event并处理 3. 实现TaskSchedulerListener, 并注册到TaskScheduler中, 这样TaskScheduler可以随时调用TaskSchedulerListener中的接口报告状况变更 TaskSchedulerListen…
Spark源码分析之-scheduler模块 这位写的非常好, 让我对Spark的源码分析, 变的轻松了许多 这里自己再梳理一遍 先看一个简单的spark操作, val sc = new SparkContext(--)val textFile = sc.textFile("README.md") textFile.filter(line => line.contains("Spark")).count()   1. SparkContext 这是Spark的…
在<Spark源码分析之七:Task运行(一)>一文中,我们详细叙述了Task运行的整体流程,最终Task被传输到Executor上,启动一个对应的TaskRunner线程,并且在线程池中被调度执行.继而,我们对TaskRunner的run()方法进行了详细的分析,总结出了其内Task执行的三个主要步骤: Step1:Task及其运行时需要的辅助对象构造,主要包括: 1.当前线程设置上下文类加载器: 2.获取序列化器ser: 3.更新任务状态TaskState: 4.计算垃圾回收时间: 5.反…
在前四篇博文中,我们分析了Job提交运行总流程的第一阶段Stage划分与提交,它又被细化为三个分阶段: 1.Job的调度模型与运行反馈: 2.Stage划分: 3.Stage提交:对应TaskSet的生成. Stage划分与提交阶段主要是由DAGScheduler完成的,而DAGScheduler负责Job的逻辑调度,主要职责也即DAG图的分解,按照RDD间是否为shuffle dependency,将整个Job划分为一个个stage,并将每个stage转化为tasks的集合--TaskSet.…
各位看官,上一篇<Spark源码分析之Stage划分>详细讲述了Spark中Stage的划分,下面,我们进入第三个阶段--Stage提交. Stage提交阶段的主要目的就一个,就是将每个Stage生成一组Task,即TaskSet,其处理流程如下图所示: 与Stage划分阶段一样,我们还是从handleJobSubmitted()方法入手,在Stage划分阶段,包括最好的ResultStage和前面的若干ShuffleMapStage均已生成,那么顺理成章的下一步便是Stage的提交.在han…
在<Spark源码分析之Job提交运行总流程概述>一文中,我们提到了,Job提交与运行的第一阶段Stage划分与提交,可以分为三个阶段: 1.Job的调度模型与运行反馈: 2.Stage划分: 3.Stage提交:对应TaskSet的生成. 今天,我们就结合源码来分析下第一个小阶段:Job的调度模型与运行反馈. 首先由DAGScheduler负责将Job提交到事件队列eventProcessLoop中,等待调度执行.入口方法为DAGScheduler的runJon()方法.代码如下: /**…
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3879151.html 在SparkContext创建过程中会调用createTaskScheduler函数来启动TaskScheduler任务调度器,本文就详细分析TaskScheduler的工作原理: TaskScheduler会根据部署方式而选择不同的SchedulerBackend来处理 下图展示了TaskScheduler.TaskSchedulerImpl.SchedulerBackend等…
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3868718.html 本文主要分享一下如何构建Spark源码分析环境.以前主要使用eclipse来阅读源码的,但是针对用scala写的spark来说不是太方便.最近开始转向使用idea 首先http://www.jetbrains.com/idea/下载安装idea 选择File->Settings->Plugins->Install JetBrain plugin安装scala插件…
继上次的Spark-shell脚本源码分析,还剩下后面半段.由于上次涉及了不少shell的基本内容,因此就把trap和stty放在这篇来讲述. 上篇回顾:Spark源码分析之Spark Shell(上) function main() { if $cygwin; then # Workaround for issue involving JLine and Cygwin # (see http://sourceforge.net/p/jline/bugs/40/). # If you're us…