参考: 1. Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context https://arxiv.org/pdf/1901.02860.pdf 2. Self-Attention with Relative Position Representations (shaw et al.2018): https://arxiv.org/pdf/1803.02155.pdf 3. [NLP] 相对位置编码(一) Re…
对于Transformer模型的positional encoding,最初在Attention is all you need的文章中提出的是进行绝对位置编码,之后Shaw在2018年的文章中提出了相对位置编码,就是本篇blog所介绍的算法RPR:2019年的Transformer-XL针对其segment的特定,引入了全局偏置信息,改进了相对位置编码的算法,将在相对位置编码(二)的blog中介绍. 本文参考链接: 1. 翻译:https://medium.com/@_init_/how-se…
摘录自:CIPS2016 中文信息处理报告<第一章 词法和句法分析研究进展.现状及趋势>P4 CIPS2016 中文信息处理报告下载链接:http://cips-upload.bj.bcebos.com/cips2016.pdf 之前写过一篇中文分词总结,那么在那篇基础上,通过在CIPS2016的摘录进行一些拓展.可参考上篇:NLP+词法系列(一)︱中文分词技术小结.几大分词引擎的介绍与比较 NLP词法.句法.语义.语篇综合系列: NLP+词法系列(一)︱中文分词技术小结.几大分词引擎的介绍与…
目录 变压器预处理 包 1 - 位置编码 1.1 - 位置编码可视化 1.2 - 比较位置编码 1.2.1 - 相关性 1.2.2 - 欧几里得距离 2 - 语义嵌入 2.1 - 加载预训练嵌入 2.2 - 笛卡尔平面上的可视化 3 - 语义和位置嵌入 恭喜! 变压器预处理 欢迎来到第 4 周的第一个未分级实验室. 在本笔记本中,您将深入研究应用于原始文本的预处理方法,然后再将其传递给转换器架构的编码器和解码器块. 完成这项任务后,您将能够: 创建可视化以获得对位置编码的直觉 可视化位置编码如何…
​前言  在计算机视觉中,相对位置编码的有效性还没有得到很好的研究,甚至仍然存在争议,本文分析了相对位置编码中的几个关键因素,提出了一种新的针对2D图像的相对位置编码方法,称为图像RPE(IRPE). 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 代码:https://github.com/microsoft/Cream/tree/main/iRPE Background Transformer的核心是self-…
这一章我们主要关注transformer在序列标注任务上的应用,作为2017年后最热的模型结构之一,在序列标注任务上原生transformer的表现并不尽如人意,效果比bilstm还要差不少,这背后有哪些原因? 解决这些问题后在NER任务上transformer的效果如何?完整代码详见ChineseNER Transformer水土不服的原因 Hang(2019)在TENER的论文中给出了两点原因 1. 三角函数绝对位置编码只考虑距离没有考虑方向 2. 距离表达在向量project以后也会消失…
C语言基础练习——最大值及其位置(二维数组) 时间限制: 1 Sec  内存限制: 10 MB 题目描述 有一个n×m的矩阵,要求编程序求出: 每行元素的最大值,以及其所在的行号和列号.求出所有元素的最大值,以及其所在的行号和列号. 输入 先输入n,m (2<=n<=100,2<=m<=100) 在输入矩阵中各元素的值.(假设为整型数) 输出 先输出每行元素的最大值的下标及其值,每个占一行: 再输出所有元素的最大值的下标及其值. 样例输入 Copy 3 4 1 2 3 4 10 1…
本节课将开始学习Deep NLP的基础--词向量模型. 背景 word vector是一种在计算机中表达word meaning的方式.在Webster词典中,关于meaning有三种定义: the idea that is represented by a word, phrase, etc. the idea that a person wants to express by using words, signs, etc. the idea that is expressed in a w…
本篇也同步笔者另一博客上(https://blog.csdn.net/qq_37608890/article/details/81530542) 一.概述 在上一篇中,我们介绍了Word2Vec即词向量,对于Word Embeddings即词嵌入有了些基础,同时也阐述了Word2Vec算法的两个常见模型 :Skip-Gram模型和CBOW模型,本篇会对两种算法做出比较分析并给出其扩展模型-GloVe模型. 首先,我们将比较下原Skip-gram算法和优化后的新Skip-gram算法情况.对比下S…
官方文档:http://developer.baidu.com/map/sdkandev-6.htm#.E7.AE.80.E4.BB.8B3 百度地图SDK为开发人员们提供了例如以下类型的地图覆盖物: 我的位置图层(MyLocationOverlay):用于显示用户当前位置的图层(支持自己定义位置图标): Poi搜索结果图层(PoiOverlay):用于显示兴趣点搜索结果的图层: 路线图层(RouteOverlay):公交.步行和驾车线路图层,将公交.步行和驾车出行方案的路线及关键点显示在地图上…