一.损失函: 模型的结构风险函数包括了   经验风险项  和  正则项,如下所示: 二.损失函数中的正则项 1.正则化的概念: 机器学习中都会看到损失函数之后会添加一个额外项,常用的额外项一般有2种,L1正则化和L2正则化.L1和L2可以看做是损失函数的惩罚项,所谓惩罚项是指对损失函数中某些参数做一些限制,以降低模型的复杂度. L1正则化通过稀疏参数(特征稀疏化,降低权重参数的数量)来降低模型的复杂度: L2正则化通过降低权重的数值大小来降低模型复杂度. 对于线性回归模型,使用L1正则化的模型叫…
 『教程』L0.L1与L2范数 一.L0范数.L1范数.参数稀疏 L0范数是指向量中非0的元素的个数.如果我们用L0范数来规则化一个参数矩阵W的话,就是希望W的大部分元素都是0,换句话说,让参数W是稀疏的. 既然L0可以实现稀疏,为什么不用L0,而要用L1呢?一是因为L0范数很难优化求解(NP难问题),二是L1范数是L0范数的最优凸近似,而且它比L0范数要容易优化求解.所以大家才把目光和万千宠爱转于L1范数. 总结:L1范数和L0范数可以实现稀疏,L1因具有比L0更好的优化求解特性而被广泛应用.…
回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss 2019-06-04 20:09:34 clover_my 阅读数 430更多 分类专栏: 阅读笔记   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/clover_my/article/details/90777964 回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss…
正则化(Regularization) 概念 L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数的平方的和的开方值. L0正则化 稀疏的参数可以防止过拟合,因此用L0范数(非零参数的个数)来做正则化项是可以防止过拟合的. 从直观上看,利用非零参数的个数,可以很好的来选择特征,实现特征稀疏的效果,具体操作时选择参数非零的特征即可.但因为L0正则化很难求解,是个NP难问题,就是难以优化,因此一般采用L1正则化.L1正则化是L0正则化的最优凸近似,比…
作为损失函数 L1范数损失函数 L1范数损失函数,也被称之为最小绝对值误差.总的来说,它把目标值$Y_i$与估计值$f(x_i)$的绝对差值的总和最小化. $$S=\sum_{i=1}^n|Y_i-f(x_i)|$$ L2范数损失函数 L2范数损失函数,也被称为最小平方误差,总的来说,它把目标值$Y_i$与估计值$f(x_i)$的差值的平方和最小化. $$S=\sum_{i=1}^n(Y_i-f(x_i))^2$$ L1损失函数 L2损失函数 鲁棒 不是很鲁棒 不稳定性 稳定解 可能多个解 总是…
监督机器学习问题无非就是“minimize your error while regularizing your parameters”,也就是在正则化参数的同时最小化误差.最小化误差是为了让我们的模型拟合我们的训练数据,而正则化参数是防止我们的模型过分拟合我们的训练数据. 因为参数太多,会导致我们的模型复杂度上升,容易过拟合,也就是我们的训练误差会很小.但训练误差小并不是我们的最终目标,我们的目标是希望模型的测试误差小,也就是能准确的预测新的样本.所以,我们需要保证模型“简单”的基础上最小化训…
目录 1. 什么是正则化?正则化有什么作用? 1.1 什么是正则化? 1.2 正则化有什么作用? 2. L1,L2正则化? 2.1 L1.L2范数 2.2 监督学习中的L1.L2正则化 3. L1.L2正则化的作用 3.1 稀疏模型与特征选择--L1 3.2 L1的直观理解 3.3 L2正则化 4. 如何选择正则化参数? Reference   有关机器学习中的L1.L2正则化,有很多的博文都在说这件事情,大致看了相关的几篇博客文章,做下总结供自己学习.当然了,也不敢想象自己能够把相关的知识都搞…
过节福利,我们来深入理解下L1与L2正则化. 1 正则化的概念 正则化(Regularization) 是机器学习中对原始损失函数引入额外信息,以便防止过拟合和提高模型泛化性能的一类方法的统称.也就是目标函数变成了原始损失函数+额外项,常用的额外项一般有两种,英文称作\(ℓ1-norm\)和\(ℓ2-norm\),中文称作L1正则化和L2正则化,或者L1范数和L2范数(实际是L2范数的平方). L1正则化和L2正则化可以看做是损失函数的惩罚项.所谓惩罚是指对损失函数中的某些参数做一些限制.对于线…
相关笔记: 吴恩达机器学习笔记(一) —— 线性回归 吴恩达机器学习笔记(三) —— Regularization正则化 ( 问题遗留: 小可只知道引入正则项能降低参数的取值,但为什么能保证 Σθ2 <=λ ? ) 主要内容: 一.线性回归之普通最小二乘法 二.局部加权线性回归 三.岭回归(L2正则项) 四.lasso回归(L1正则项) 五.前向逐步回归 一.线性回归之普通最小二乘法 1.参数的值:(不带正则项) 2.Python代码: def standRegres(xArr, yArr):…
本文翻译自文章:Differences between L1 and L2 as Loss Function and Regularization,如有翻译不当之处,欢迎拍砖,谢谢~   在机器学习实践中,你也许需要在神秘的L1和L2中做出选择.通常的两个决策为:1) L1范数 vs L2范数 的损失函数: 2) L1正则化 vs L2正则化. 作为损失函数   L1范数损失函数,也被称为最小绝对值偏差(LAD),最小绝对值误差(LAE).总的说来,它是把目标值(\(Y_{i}\))与估计值(\…
神经网络中损失函数后一般会加一个额外的正则项L1或L2,也成为L1范数和L2范数.正则项可以看做是损失函数的惩罚项,用来对损失函数中的系数做一些限制. 正则化描述: L1正则化是指权值向量w中各个元素的绝对值之和; L2正则化是指权值向量w中各个元素的平方和然后再求平方根; 一般都会在正则化项之前添加一个系数,这个系数需要用户设定,系数越大,正则化作用越明显. 正则化作用: L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择,一定程度上,L1也可以防止过拟合;L2正则化可以防止…
1. 为什么要使用正则化   我们先回顾一下房价预测的例子.以下是使用多项式回归来拟合房价预测的数据:   可以看出,左图拟合较为合适,而右图过拟合.如果想要解决右图中的过拟合问题,需要能够使得 $ x^3,x^4 $ 的参数 $ \theta_3,\theta_4 $ 尽量满足 $ \theta_3 \approx 0 ,\theta_4 \approx 0 $ .   而如何使得 $ \theta_3,\theta_4 $ 尽可能接近 $ 0 $ 呢?那就是对参数施一惩罚项.我们先来看一下线…
L1范数损失函数,也被称为最小绝对值偏差(LAD),最小绝对值误差(LAE) L2范数损失函数,也被称为最小平方误差(LSE) L2损失函数 L1损失函数 不是非常的鲁棒(robust) 鲁棒 稳定解 不稳定解 总是一个解 可能多个解 鲁棒性 最小绝对值偏差之所以是鲁棒的,是因为它能处理数据中的异常值.如果需要考虑任一或全部的异常值,那么最小绝对值偏差是更好的选择. L2范数将误差平方化(如果误差大于1,则误差会放大很多),模型的误差会比L1范数来得大,因此模型会对这个样本更加敏感,这就需要调整…
                                                                           第十四节过拟合解决手段L1和L2正则 第十三节中,我们讲解了过拟合的情形,也就是过度的去拟合训练集上的结果了,反倒让你的模型太复杂.为了去解决这种现象,我们提出用L1,L2正则去解决这种问题. 怎么把正则应用进去?我们重新审视目标函数,以前我们可以理解目标函数和损失函数是一个东西.而有正则的含义之后,目标函数就不再是损失函数了,而是损失函数加惩罚项…
1. 简单列子: 一个损失函数L与参数x的关系表示为: 则 加上L2正则化,新的损失函数L为:(蓝线) 最优点在黄点处,x的绝对值减少了,但依然非零. 如果加上L1正则化,新的损失函数L为:(粉线) 最优点为红点,变为0,L1正则化让参数的最优值变为0,更稀疏. L1在江湖上人称Lasso,L2人称Ridge. 两种正则化,能不能将最优的参数变为0,取决于最原始的损失函数在0点处的导数,如果原始损失函数在0点处的导数不为0,则加上L2正则化之后(+2Cx),导数依然不为0.而加上L1正则化(导数…
参考这篇文章: https://baijiahao.baidu.com/s?id=1621054167310242353&wfr=spider&for=pc https://blog.csdn.net/jinping_shi/article/details/52433975 参考这篇文章: https://baijiahao.baidu.com/s?id=1621054167310242353&wfr=spider&for=pc https://blog.csdn.net/…
本文从以下六个方面,详细阐述正则化L1和L2: 一. 正则化概述 二. 稀疏模型与特征选择 三. 正则化直观理解 四. 正则化参数选择 五. L1和L2正则化区别 六. 正则化问题讨论 一. 正则化概述 正则化(Regularization),L1和L2是正则化项,又叫做罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项. 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者…
一.岭回归和 LASSO 回归的推导过程 1)岭回归和LASSO回归都是解决模型训练过程中的过拟合问题 具体操作:在原始的损失函数后添加正则项,来尽量的减小模型学习到的 θ 的大小,使得模型的泛化能力更强: 2)比较 Ridge 和 LASSO 名词 Ridge.LASSO:衡量模型正则化: MSE.MAE:衡量回归结果的好坏: 欧拉距离.曼哈顿距离:衡量两点之间距离的大小: 理解 Ridge.LASSO:在损失函数后添加的正则项不同: MSE.MAE:两种误差的表现形式与对应的 Ridge 和…
[深度学习]L1正则化和L2正则化 在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况.正则化是机器学习中通过显式的控制模型复杂度来避免模型过拟合.确保泛化能力的一种有效方式.如果将模型原始的假设空间比作"天空",那么天空飞翔的"鸟"就是模型可能收敛到的一个个最优解.在施加了模型正则化后,就好比将原假设空间("天空")缩小到一定的空间…
https://blog.csdn.net/tianguiyuyu/article/details/80438630 以上是莫烦对L1和L2的理解 l2正则:权重的平方和,也就是一个圆 l1正则:权重的绝对值之和,等价与一个正方形. 图中,正则项和损失项的交点就是最优解的位置,我们可以看到,在只有2个参数的情况下,l1倾向使得某个参数直接为0:l2倾向使得某些参数逼近0 再看下吴恩达的理解 正则化的意义:在于让高阶的参数逼近0,使其对拟合函数的贡献变小:可以看到theta3和theta4,我们给…
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:t…
ps:转的.当时主要是看到一个问题是L1 L2之间有何区别,当时对l1与l2的概念有些忘了,就百度了一下.看完这篇文章,看到那个对W减小,网络结构变得不那么复杂的解释之后,满脑子的6666-------->把网络权重W看做为对上一层神经元的一个WX+B的线性函数模拟一个曲线就好.知乎大神真的多. 版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   本文是<Neural networks and deep learning>概览 中第三章的一部分,讲机器学习/深…
第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归 上一节中我们讲解了L1和L2正则的概念,知道了L1和L2都会使不重要的维度权重下降得多,重要的维度权重下降得少,引入L1正则会使不重要的w趋于0(达到稀疏编码的目的),引入L2正则会使w的绝对值普遍变小(达到权值衰减的目的).本节的话我们从几何角度再讲解下L1和L2正则的区别. L1正则是什么?|W1|+|W2|,假如|W1|+|W2|=1,也就是w1和w2的绝对值之和为1 .让你画|W1|+|W2|=1的图形,…
1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计”(Maximum Likelihood Estimation, MLE)与“最大后验概率估计”(Maximum A Posteriori Estimation,MAP)的历史可谓源远流长,这两种经典的方法也成为机器学习领域的基础被广泛应用. 有趣的是,这两种方法还牵扯到“频率学派”与“贝叶斯学派”的派别之争,…
规范化(Regularization) 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数. L1正则化和L2正则化可以看做是损失函数的惩罚项.所谓『惩罚』是指对损失函数中的某些参数做一些限制.对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归).下图是Python中Lasso回归的损失函数,式中加号后面一项α||w…
概述 线性回归拟合一个因变量与一个自变量之间的线性关系y=f(x).       Spark中实现了:       (1)普通最小二乘法       (2)岭回归(L2正规化)       (3)Lasso(L1正规化).       (4)局部加权线性回归       (5)流式数据可以适用于线上的回归模型,每当有新数据达到时,更新模型的参数,MLlib目前使用普通的最小二乘支持流线性回归.除了每批数据到达时,模型更新最新的数据外,实际上与线下的执行是类似的. 本文采用的符号: 拟合函数   …
https://blog.csdn.net/jinping_shi/article/details/52433975 https://blog.csdn.net/zouxy09/article/details/24971995 一.概括: L1和L2是正则化项,又叫做罚项,是为了限制模型的参数,防止模型过拟合而加在损失函数后面的一项. 二.区别: 1.L1是模型各个参数的绝对值之和. L2是模型各个参数的平方和的开方值. 2.L1会趋向于产生少量的特征,而其他的特征都是0. 因为最优的参数值很大…
1.概念  L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数的平方的和的开方值. 2.问题  1)实现参数的稀疏有什么好处吗? 一个好处是可以简化模型,避免过拟合.因为一个模型中真正重要的参数可能并不多,如果考虑所有的参数起作用,那么对训练数据可以预测的很好,但是对测试数据就只能呵呵了.另一个好处是参数变少可以使整个模型获得更好的可解释性. 2)参数值越小代表模型越简单吗? 是的.为什么参数越小,说明模型越简单呢,这是因为越复杂的模型,越是会…
正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束.调整或缩小.也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险. 一.数学基础 1. 范数 范数是衡量某个向量空间(或矩阵)中的每个向量以长度或大小.范数的一般化定义:对实数p>=1, 范数定义如下:   L1范数 当p=1时,是L1范数,其表示某个向量中所有元素绝对值的和. L2范数 当p=2时,是L2范数, 表示某个向量中所有元素平方和再开根, 也就是欧几里得距离…
一.序言 前面的文章中,我们逐步从单神经元.浅层网络到深层网络,并且大概搞懂了“向前传播”和“反向传播”的原理,比较而言深层网络做“手写数字”识别已经游刃有余了,但神经网络还存在很多问题,比如最常见的两个问题:“过拟合”和“欠拟合”,下图中从左到右依次是“欠拟合”.“刚刚好”.“过拟合”. 简单点说,欠拟合是我们学习到的w没能很好地“满足”训练数据的特征,一般是因为训练数据太少.训练次数不够.神经网络太简单等问题,优化地方法也比较容易,有针对性地增加训练数据.训练次数或使用更复杂的网络即可.过拟…