https://blog.csdn.net/qq_23981335/article/details/81480220…
  TensorFlow Saver 保存最佳模型 tf.train.Saver Save Best Model Checkmate is designed to be a simple drop-in solution for a very common Tensorflow use-case: keeping track of the best model checkpoints during training. The BestCheckpointSaver is a wrapper ar…
Tensorflow Mask-RCNN训练识别箱子的模型…
看了几天word2vec的理论,终于是懂了一些.理论部分我推荐以下几篇教程,有博客也有视频: 1.<word2vec中的数学原理>:http://www.cnblogs.com/peghoty/p/3857839.html 2.刘建平:word2vec原理:https://www.cnblogs.com/pinard/p/7160330.html 3.吴恩达:<序列模型:自然语言处理与词嵌入> 理论看完了就要实战了,通过实战能加深对word2vec的理解.目前用word2vec算法…
四.模型测试 1)下载文件 在已经阅读并且实践过前3篇文章的情况下,读者会有一些文件夹.因为每个读者的实际操作不同,则文件夹中的内容不同.为了保持本篇文章的独立性,制作了可以独立运行的文件夹目标检测. 链接:https://pan.baidu.com/s/1tHOfRJ6zV7lVEcRPJMiWaw 提取码:mf9r,下载到桌面,并解压,目标检测目录下存在:nets.object_detection.training三个文件夹,文件夹training中含有训练了200000次的模型 要求:读者…
二.数据准备 1)下载图片 图片来源于ImageNet中的鲤鱼分类,下载地址:https://pan.baidu.com/s/1Ry0ywIXVInGxeHi3uu608g 提取码: wib3 在桌面新建文件夹目标检测,把下载好的压缩文件n01440764.tar放到其中,并解压 2)选择图片 在此数据集中,大部分图片都较为清晰,但是有极少数图片像素点少,不清晰.像素点少的图片不利于模型训练或模型测试,选出部分图片文件,在目标检测路径下输入jupyter notebook,新建一个get_som…
一. LeNet-5 LeNet-5是一种用于手写体字符识别的非常高效的卷积神经网络. 卷积神经网络能够很好的利用图像的结构信息. 卷积层的参数较少,这也是由卷积层的主要特性即局部连接和共享权重所决定. LeNet-5共有7层,不包含输入,每层都包含可训练参数:每个层有多个Feature Map,每个FeatureMap通过一种卷积滤波器提取输入的一种特征,然后每个FeatureMap有多个神经元. 数据集:mnist train-images-idx3-ubyte 训练数据图像 (60,000…
在 subclassed_model.py 中,通过对 tf.keras.Model 进行子类化,设计了两个自定义模型. import tensorflow as tf tf.enable_eager_execution() # parameters UNITS = 8 class Encoder(tf.keras.Model): def __init__(self): super(Encoder, self).__init__() self.fc1 = tf.keras.layers.Dens…
本文地址:https://www.cnblogs.com/tujia/p/13862357.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tensorflow开发基本流程 [2]TensorFlow光速入门-数据预处理(得到数据集) [3]TensorFlow光速入门-训练及评估 [4]TensorFlow光速入门-保存模型及加载模型并使用 [5]TensorFlow光速入门-图片分类完整代码 [6]TensorFlow光速入门-python模…
本文以两篇官方文档为基础来学习TensorFlow如何进行分布式训练,借此进入Strategy世界.…