贝叶斯.概率分布与机器学习 转自:http://www.cnblogs.com/LeftNotEasy/archive/2010/09/27/1837163.html  本文由LeftNotEasy原创,可以转载,但请保留出处和此行,如果有商业用途,请联系作者 wheeleast@gmail.com 一. 简单的说贝叶斯定理: 贝叶斯定理用数学的方法来解释生活中大家都知道的常识 形式最简单的定理往往是最好的定理,比如说中心极限定理,这样的定理往往会成为某一个领域的理论基础.机器学习的各种算法中使…
本文会利用到上篇,博客的分解定理,需要的可以查找上篇博客 D-separation对任何用有向图表示的概率模型都成立,无论随机变量是离散还是连续,还是两者的结合. 部分图为手写,由于本人字很丑,望见谅,只是想把PRML书的一些部分总结出来,给有需要的人看,希望能帮到一些人理解吧.…
转:http://www.cnblogs.com/Dzhouqi/p/3204481.html本文会利用到上篇,博客的分解定理,需要的可以查找上篇博客 D-separation对任何用有向图表示的概率模型都成立,无论随机变量是离散还是连续,还是两者的结合. 部分图为手写,由于本人字很丑,望见谅,只是想把PRML书的一些部分总结出来,给有需要的人看,希望能帮到一些人理解吧.…
1. 从贝叶斯方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括贝叶斯方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界的真实变化而随机修正,我对世界永远保持开放的态度. 1763年,民间科学家Thomas Bayes发表了一篇名为<An essay towards solving a problem in the doctrine of chances>的论文, 这篇论文发表后,在当时并未产生多少影响,但是在20…
http://blog.csdn.net/pipisorry/article/details/52489270 为什么用贝叶斯网络 联合分布的显式表示 Note: n个变量的联合分布,每个x对应两个值,共n个x,且所有概率总和为1,则联合分布需要2^n-1个参数. 贝叶斯网表示 独立性质的应用会降低参数数目,表达更紧凑. [PGM:贝叶斯网表示之朴素贝叶斯模型naive Bayes:独立性质的利用] 皮皮blog 贝叶斯网络 贝叶斯网络(Bayesian network),又称信念网络(Beli…
贝叶斯网(Bayesian networks)是一种描述随机变量之间关系的语言,构造贝叶斯网是为了概率推理,理论上概率推理基于联合概率分布就行了,但是联合概率分布(基于表)的复杂度会呈指数增长,贝叶斯网(基于图)可以弥补其中的不足,我们利用问题的结构可以把联合概率分布进行分解,从而大大降低计算复杂度. 贝叶斯网是图论与概率论相结合的产物,图论用于描述,概率论用于优化. 许多经典的多元概率模型都是贝叶斯的特例,包括朴素贝叶斯模型(naive Bayes models),隐类模型(latent cl…
http://blog.csdn.net/pipisorry/article/details/52469064 独立性质的利用 条件参数化和条件独立性假设被结合在一起,目的是对高维概率分布产生非常紧凑的表示. 随机变量的独立性 [PGM:概率论基础知识:独立性性质的利用] 条件参数化方法 Note: P(I), P(S | i0), P(S | i1)都是二项式分布,都只需要一个参数. 皮皮blog 朴素贝叶斯模型naive Bayes 朴素贝叶斯模型的学生示例 {这个示例很好的阐述了什么是朴素…
1. 贝叶斯网理论部分 笔者在另一篇文章中对贝叶斯网的理论部分进行了总结,在本文中,我们重点关注其在具体场景里的应用. 2. 从概率预测问题说起 0x1:条件概率预测模型之困 我们知道,朴素贝叶斯分类器和Logistic regression模型都是产生概率估计来代替硬性的分类.对于每个类值,它们都是估计某个实例属于这个类的概率. 实际上,大多数其他机器学习分类器都可以转化为产生这类信息的模型,例如: 通过计算叶子节点上每类的相对频率,就能从决策树中得到概率 通过检验某条规则所覆盖的实例,就能从…
http://blog.csdn.net/pipisorry/article/details/52578631 本文讨论(完备数据的)贝叶斯网的参数估计问题:贝叶斯网的MLE最大似然估计和贝叶斯估计.假定网络结构是固定的,且假定数据集D包含了网络变量的完全观测实例. 参数估计的主要方法有两种:一种基于最大的似然的估计:一种是使用贝叶斯方法. 贝叶斯网的MLE参数估计 最大似然估计MLE [参数估计:最大似然估计MLE] 简单示例:局部似然函数 仅包含两个二元变量的网络,即弧 从上看出,似然函数被…
近来对贝叶斯网十分感兴趣,按照博客<读懂概率图模型:你需要从基本概念和参数估计开始>给出的第一个例子,试着搭建了一个student网. (1)点击绿F,对条件概率表予以输入(包括两个祖先节点difficulty和intelligence,这两个节点的绿F输入将会显现在柱状图面版上,其它CPT输入则不显示在面版,仅在点击黄色闪电后自动计算得到). (2)现以SAT为例说明为什么p(SAT=low)=0.725: 已知先验概率:p(intelligence=bad)=0.7,p(intellige…
贝叶斯优化 Bayesian Optimization 2018年07月02日 22:28:06 余生最年轻 阅读数 4821更多 分类专栏: 机器学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_40597317/article/details/80888837 关键字:提取函数aquisition function,熵,响应曲面 简介:所谓优化,实际上就是一个求极值的过程…
1. 离散节点 在官方Tutorial中是有详细的案例的,就是B篇3.3节,你可以动手把天气预报这个实现一下: http://www.norsys.com/tutorials/netica/secB/tut_B3.htm#LearningProbTables 2. 连续节点 假如我想输入的不是离散的状态,而是连续的数值,则不能像上一个案例一样做了. *  离散状态:难,易:阴,晴,雨:是,否……这些都是多选一问题,天气只能是“阴,晴,雨”三选一,课程难度只有“难,易”两个选项,而不是“0为最易1…
http://blog.csdn.net/pipisorry/article/details/52599321 没时间看了,下次再看... 具有共享参数的学习模型 全局参数共享 局部参数共享 具有 共享参数的贝叶斯推断 层次先验* 皮皮blog 专栏17.E 文本分类的词袋模型 伯努利朴素贝叶斯模型和多项式朴素贝叶斯模型 隐含狄利克雷分布LDA 皮皮blog 泛化分析* 渐近性分析 PAC界 皮皮blog from: http://blog.csdn.net/pipisorry/article/…
目前在研究Automated Machine Learning,其中有一个子领域是实现网络超参数自动化搜索,而常见的搜索方法有Grid Search.Random Search以及贝叶斯优化搜索.前两者很好理解,这里不会详细介绍.本文将主要解释什么是体统(沉迷延禧攻略2333),不对应该解释到底什么是贝叶斯优化. I Grid Search & Random Search 我们都知道神经网络训练是由许多超参数决定的,例如网络深度,学习率,卷积核大小等等.所以为了找到一个最好的超参数组合,最直观的…
有向图模型:directed acyclic graph  DAG  贝叶斯网络 对称的,无向图, UGM: undirected graphic model  UGM, 更有名的名称是MRF,markov random field 马尔科夫随机场 discriminative UGM: 高大上的名字是,条件随机场,CRF, conditional random fields MRF的特例: hopfield network hopfield network的特例 Boltsmann machi…
https://www.cnblogs.com/leoo2sk/archive/2010/09/18/bayes-network.html 2.1.摘要 在上一篇文章中我们讨论了朴素贝叶斯分类.朴素贝叶斯分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立).当这个条件成立时,朴素贝叶斯分类法的准确率是最高的,但不幸的是,现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素贝叶斯分类的能力.这一篇文章中,我们接着上一篇文章的例…
简介 Naive Bayesian算法 也叫朴素贝叶斯算法(或者称为傻瓜式贝叶斯分类) 朴素(傻瓜):特征条件独立假设 贝叶斯:基于贝叶斯定理 这个算法确实十分朴素(傻瓜),属于监督学习,它是一个常用于寻找决策面的算法. 基本思想 (1)病人分类举例 有六个病人 他们的情况如下: 症状 职业 病名 打喷嚏 护士 感冒 打喷嚏 农夫 过敏 头痛 建筑工人 脑震荡 头痛 建筑工人 感冒 打喷嚏 教师 感冒 头痛 教师 脑震荡 根据这张表 如果来了第七个病人 他是一个 打喷嚏 的 建筑工人 那么他患上…
[导读]斯坦福大学的人工智能课程"CS 221"至今仍然是人工智能学习课程的经典之一.为了方便广大不能亲临现场听讲的同学,课程官方推出了课程笔记CheatSheet,涵盖4大类模型. 斯坦福大学的人工智能课程"CS 221",这门铁打的课程从2011年开始已经走过了8个年头,流水的讲师换了一批又一批,送走的毕业生一拨又一拨,至今仍然是人工智能学习的经典课程之一.目前2019年春季课程正在如火如荼的开展中. 这门课程是没有教科书的,所有内容都蕴含在讲师的教案以及课后作…
贝叶斯优化 (BayesianOptimization) 1 问题提出 神经网咯是有许多超参数决定的,例如网络深度,学习率,正则等等.如何寻找最好的超参数组合,是一个老人靠经验,新人靠运气的任务. 穷举搜索 Grid Search 效率太低:随机搜索比穷举搜索好一点:目前比较好的解决方案是贝叶斯优化 1.1 贝叶斯优化的优点 贝叶斯调参采用高斯过程,考虑之前的参数信息,不断地更新先验:网格搜索未考虑之前的参数信息 贝叶斯调参迭代次数少,速度快:网格搜索速度慢,参数多时易导致维度爆炸 贝叶斯调参针…
1. 写在之前的话 0x1:贝叶斯推断的思想 我们从一个例子开始我们本文的讨论.小明是一个编程老手,但是依然坚信bug仍有可能在代码中存在.于是,在实现了一段特别难的算法之后,他开始决定先来一个简单的测试用例,这个用例通过了.接着,他用了一个稍微复杂的测试用例,再次通过了.接下来更难的测试用例也通过了,这时,小明开始觉得这段代码出现bug的可能性大大大大降低了.... 上面这段白话文中,已经包含了最质朴的贝叶斯思想了!简单来说,贝叶斯推断是通过新得到的证据不断地更新我们的信念. 贝叶斯推断很少会…
0. motivations 如何确定 GMM 模型的 k,既观察到的样本由多少个高斯分布生成.由此在数据属于高维空间中时,根本就无法 visualize,更加难以建立直观,从而很难确定 k,高斯分布分量的个数.…
若F分布的每个条件独立性质都反映在A图中,则A图被称为F分布的D map. 若A图表现出的所有条件独立性质都在F分布中满足(与F分布不矛盾),则A图被称为F分布的I map. 弱A图既是F分布的D map,也是I map,则A图是B分布的完美图perfect map.…
http://blog.csdn.net/pipisorry/article/details/51461878 概率图模型Graphical Models简介 完全通过代数计算来对更加复杂的模型进行建模和求解.然而,我们会发现,使用概率分布的图形表示进行分析很有好处.这种概率分布的图形表示被称为概率图模型( probabilistic graphical models ).这些模型提供了几个有用的性质:• 它们提供了一种简单的方式将概率模型的结构可视化,可以用于设计新的模型.• 通过观察图形,我…
本文的主题是“贝叶斯网络”(Bayesian Network) 贝叶斯网络是一个典型的图模型,它对感兴趣变量(variables of interest)及变量之间的关系(relationships)进行建模.当将贝叶斯模型与统计技术一起使用时,这种图模型分析数据具有如下几个优势: (1)    贝叶斯学习能够方便的处理不完全数据.例如考虑具有相关关系的多个输入变量的分类或回归问题,对标准的监督学习算法而言,变量间的相关性并不是它们处理的关键因素,当这些变量中有某个缺值时,它们的预测结果就会出现…
声明:本文转载自http://www.sigvc.org/bbs/thread-728-1-1.html,个人感觉是很好的PGM理论综述,高屋建瓴的总结了PGM的主要分支和发展趋势,特收藏于此. “概率模型与计算机视觉”林达华美国麻省理工学院(MIT)博士   上世纪60年代, Marvin Minsky 在MIT让他的本科学生 Gerald Jay Sussman用一个暑假的时间完成一个有趣的Project: “link a camera to a computer and get the c…
1 贝叶斯网络在地学中的应用 1 1.1基本原理及发展过程 1 1.2 具体的研究与应用 4 2 BP神经网络在地学中的应用 6 2.1BP神经网络简介 6 2.2基本原理 7 2.3 在地学中的具体应用与研究 9 结论 11 参考文献 12 1 贝叶斯网络在地学中的应用 贝叶斯网络是一种概率网络,它是基于概率推理的图形化网络,而贝叶斯公式则是这个概率网络的基础.贝叶斯网络是基于概率推理的数学模型,所谓概率推理就是通过一些变量的信息来获取其他的概率信息的过程,基于概率推理的贝叶斯网络(Bayes…
本篇博客是Daphne Koller课程Probabilistic Graphical Models(PGM)的学习笔记. 概率图模型是一类用图形模式表达基于概率相关关系的模型的总称.概率图模型共分为三个部分,分别为表示理论,推理理论和学习理论.基本的概率图模型包括贝叶斯网络.马尔科夫网络和隐马尔科夫网络. Student Example 一个学生,拥有成绩.课程难度.智力.SAT的分.推荐信等变量. 通过一张图可以把这些变量的关系表示出来,可以想象成绩由课程难度和智力决定,SAT成绩由智力决定…
1.概率图模型 概率图模型是一类用图来表达变量相关关系的概率模型,它以图为表示工具,最常见的是用一个结点表示一个或一组随机变量,结点之间的边表示变量间的概率相关关系.概率图模型可大致分为两类:第一类是使用有向无环图表示变量间的依赖关系,称为有向图模型或贝叶斯网,第二类是使用无向图表示变量间的相关关系,称为无向图模型或马尔科夫网. 2.马尔科夫系列 马尔科夫过程和马尔科夫链: 马尔科夫过程:随机过程中,有一类具有“无后效性性质”,即当随机过程在某一时刻to所处的状态已知的条件下,过程在时刻t>to…
概率图模型是图论与概率方法的结合产物.Probabilistic graphical models are a joint probability distribution defined over a graph,概率图模型是定义在一副图上的联合概率分布(joint probability distribution). 图模型分为两种: 有向图(directed graphs):bayesian networks 无向图(undirected graphs):Markov random fie…
注: 本文是对<IPython Interactive Computing and Visualization Cookbook>一书中第七章[Introduction to statistical data analysis in Python – frequentist and Bayesian methods]的简单翻译和整理,这部分内容主要将对统计学习中的频率论方法和贝叶斯统计方法进行介绍. 本文将介绍如何洞察现实世界的数据,以及如何在存在不确定性的情况下做出明智的决定. 统计数据分析…