注:原文代码链接http://scikit-learn.org/stable/auto_examples/text/mlcomp_sparse_document_classification.html 运行结果为: Loading 20 newsgroups training set... 20 newsgroups dataset for document classification (http://people.csail.mit.edu/jrennie/20Newsgroups) 131…
源代码的链接为http://scikit-learn.org/stable/auto_examples/text/document_clustering.html Loading 20 newsgroups dataset for categories: ['alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space'] 3387 documents 4 categories Extracting features from t…
http://scikit-learn.org/stable/modules/feature_extraction.html 4.2节内容太多,因此将文本特征提取单独作为一块. 1.the bag of words representation 将raw data表示成长度固定的数字特征向量,scikit-learn提供了三个方式: tokenizing:给每个token(字.词.粒度自己把握)一个整数索引id counting:每一个token在每一个文档中出现的次数 normalizing:…
feature_selection模块 Univariate feature selection:单变量的特征选择 单变量特征选择的原理是分别单独的计算每个变量的某个统计指标,根据该指标来判断哪些指标重要.剔除那些不重要的指标.   sklearn.feature_selection模块中主要有以下几个方法: SelectKBest和SelectPercentile比较相似,前者选择排名排在前n个的变量,后者选择排名排在前n%的变量.而他们通过什么指标来给变量排名呢?这需要二外的指定. 对于re…
目录 特征选择 (feature_selection) Filter 1. 移除低方差的特征 (Removing features with low variance) 2. 单变量特征选择 (Univariate feature selection) Wrapper 3. 递归特征消除 (Recursive Feature Elimination) Embedded 4. 使用SelectFromModel选择特征 (Feature selection using SelectFromMode…
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 项目合作QQ:231469242 变量筛选:(逻辑回归) 好处: 变量少,模型运行速度快,更容易解读和理解 坏处: 会牺牲掉少量精确性 变量不筛选:(r…
參考:http://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter 三种方法评估模型的预測质量: Estimator score method: Estimators都有 score method作为默认的评估标准,不属于本节内容.详细參考不同estimators的文档. Scoring parameter: Model-evaluation toolsusing cross-validation (…
数据集分割 一.Online learning for 手写识别 From: Comparing various online solvers An example showing how different online solvers perform on the hand-written digits dataset. Ref: 在线机器学习算法及其伪代码 PA, CW, AROW, NHerd都是 Jubatus分布式 在线机器学习 框架能提供的算法. 感知器:linear_model.…
From: Out-of-core classification of text documents Code:  """ ====================================================== Out-of-core classification of text documents ====================================================== This is an example show…
1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题. Scoring参数:使用cross-validation的模型评估工具,依赖于内部的scoring策略.见下. Metric函数:metrics模块实现了一些函数,用来评估预测误差.见下. 2. scoring参数 模型选择和评估工具,例如: grid_search.GridSearchCV 和 cross…
http://cloga.info/2014/01/19/sklearn_text_feature_extraction/ 文本特征提取 词袋(Bag of Words)表征 文本分析是机器学习算法的主要应用领域.但是,文本分析的原始数据无法直接丢给算法,这些原始数据是一组符号,因为大多数算法期望的输入是固定长度的数值特征向量而不是不同长度的文本文件.为了解决这个问题,scikit-learn提供了一些实用工具可以用最常见的方式从文本内容中抽取数值特征,比如说: 标记(tokenizing)文本…
參考:http://scikit-learn.org/stable/modules/scaling_strategies.html 对于examples.features(或者两者)数量非常大的情况,挑战传统的方法要解决两个问题:内存和效率.办法是Out-of-core (or "external memory") learning. 有三种方法能够实现out-of-core.各自是: 1.Streaming instances(流体化实例): 简单说就是.instances是一个一个…
http://blog.csdn.net/pipisorry/article/details/41957763 文本特征提取 词袋(Bag of Words)表征 文本分析是机器学习算法的主要应用领域. 可是,文本分析的原始数据无法直接丢给算法.这些原始数据是一组符号,由于大多数算法期望的输入是固定长度的数值特征向量而不是不同长度的文本文件.为了解决问题,scikit-learn提供了一些有用工具能够用最常见的方式从文本内容中抽取数值特征,比方说: 标记(tokenizing)文本以及为每个可能…
TF-IDF Algorithm From http://www.ruanyifeng.com/blog/2013/03/tf-idf.html Chapter 1, 知道了"词频"(TF)和"逆文档频率"(IDF)以后,将这两个值相乘,就得到了一个词的TF-IDF值.某个词对文章的重要性越高,它的TF-IDF值就越大. (1) 出现次数最多的词是----"的"."是"."在"----这一类最常用的词.它们…
 ICIC Express Letters                  ICIC International ⓒ2010 ISSN 1881-803X Volume4, Number5, October 2010                                                pp.1–6   A Novel Multi-label Classification Based on PCA and ML-KNN Di Wu, Dapeng Zhang, Fe…
#region 接口返回的Xml转换成DataSet /// <summary> /// 返回的Xml转换成DataSet /// </summary> /// <param name="text">Xml字符</param> /// <returns></returns> private DataSet GetDataSet(string text) { try { XmlTextReader reader =…
XiangBai_CVPR2018_Rotation-Sensitive Regression for Oriented Scene Text Detection 作者和代码 caffe代码 关键词 文字检测.多方向.SSD.$$xywh\theta$$.one-stage,开源 方法亮点 核心思想认为,分类问题对于旋转不敏感,但回归问题对于旋转是敏感的,因此两个任务不应该用同样的特征.所以作者提出来基于旋转CNN的思路,先对特征做不同角度的旋转,该特征用于做框的回归,而对分类问题,采用沿ori…
Week 2 OverviewHelp Center Week 2 On this page: Instructional Activities Time Goals and Objectives Key Phrases/Concepts Guiding Questions Readings and Resources Video Lectures Tips for Success Getting and Giving Help Instructional Activities Below is…
做了个小的DataGrid通过DataSet保存为xml_测试,DataGrid通过DataSet保存为xml_测试,通过dataSet.writeXML()和dataSet.readXML()方法完成了写入和自动读取,在一些大型项目中,xml作为一些不经常修改的配置文件的作用就显得很重要!也可以试验DataSet从数据库获取ROW,请见我的上一篇文章~ 本项目为了结构逻辑更加清晰,使用了分层结构,包括一个class文件和form文件~ 类ItemList代码<主要是一些ITEM属性和dataS…
#region 导入excel 返回Dataset public DataSet ExecleDataSet(string filename, string file, string Type) { string strConn = ""; if (Type.Equals(".xlsx")) { strConn = "Provider=Microsoft.Ace.OleDb.12.0;Data Source=" + filename + &quo…
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition Reference This is the class and function reference of scikit-learn. Please refer to the full user guide for further details, as the class and function raw specifications…
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinci 10:30  ARS-L1.1—GROUP STRUCTURED DIRTY DICTIONARY LEARNING FOR CLASSIFICATION Yuanming Suo, Minh Dao, Trac Tran, Johns Hopkins University, USA; Hojj…
Awesome Python  A curated list of awesome Python frameworks, libraries, software and resources. Inspired by awesome-php. Awesome Python Environment Management Package Management Package Repositories Distribution Build Tools Interactive Interpreter Fi…
Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstitions cheat sheet Introduction to Deep Learning with Python How to implement a neural network How to build and run your first deep learning network Neur…
What is Text Classification? Text classification typically involves assigning a document to a category by automated or human means. LingPipe provides a classification facility that takes examples of text classifications--typically generated by a huma…
3.2. Grid Search: Searching for estimator parameters Parameters that are not directly learnt within estimators can be set by searching a parameter space for the best Cross-validation: evaluating estimator performance score. Typical examples include C…
A curated list of awesome Python frameworks, libraries, software and resources. Inspired by awesome-php. Admin Panels Libraries for administrative interfaces. Ajenti - The admin panel your servers deserve. django-suit - Alternative Django Admin-Inter…
awesome-text-summarization 2018-07-19 10:45:13 A curated list of resources dedicated to text summarization Contents Corpus Opinosis dataset contains 51 articles. Each article is about a product’s feature, like iPod’s Battery Life, etc. and is a colle…
  目录(?)[+]   1.搜狗实验室数据集: http://www.sogou.com/labs/dl/p.html 互联网图片库来自sogou图片搜索所索引的部分数据.其中收集了包括人物.动物.建筑.机械.风景.运动等类别,总数高达2,836,535张图片.对于每张图片,数据集中给出了图片的原图.缩略图.所在网页以及所在网页中的相关文本.200多G 2 http://www.imageclef.org/ IMAGECLEF致力于位图片相关领域提供一个基准(检索.分类.标注等等) Cross…
Awesome Python  A curated list of awesome Python frameworks, libraries, software and resources. Inspired by awesome-php. Awesome Python Admin Panels Algorithms and Design Patterns Anti-spam Asset Management Audio Authentication Build Tools Caching Ch…