【费式数列(Fibonacci数列)】】的更多相关文章

/* 说明: Fibonacci为1200年代的欧洲数学家,在他的着作中曾经提到:若有一只兔子每个月生一只小兔子,一个月后也开 始生产.起初只有一只兔子,一个月后就有两只兔子,二个月后就有三只兔子,三个月后有五只兔子(小兔子投入 生产)…… 如果不太理解这个例子的话,举个图就知道了,注意新生的小兔子需一个月成长期才会投入生产,类似的道理也可 以用于植物生长这就是Fibonacci数列,一般习惯称之为费式数列,例如一下:1,1,2,3,5,8,13,21,34, 55,89 解法: 我们可以讲费式…
fibonacci 数列及其延展 fibonacci计算 fibonacci数列是指 0,1,1,2,3,5,8,13,21……这样自然数序列,即从第3项开始满足f(n)=f(n-1)+f(n-2): 递归实现非常简单: long long fibonacci(unsigned int n) { ] = {, }; ) return result[n]; ) + fibonacci(n-); } 以计算f(10)为例,必须先求得f(9)和f(8),要计算f(9),又必须先求得f(8)和f(7),…
数学归纳法 我们先来看一个例子: 我们让多诺米骨牌倒下的充要条件是: 第一块骨牌倒下: 假设当当前块骨牌倒下时,则他的后面一块也会倒下. 我们把这个例子给抽象出来就可以得到数学归纳法的证明过程: [第一数学归纳法]证明一个关于正整数n的命题P(n)成立: 当n=1时,P(1)成立. 当n≥2时,假设P(n-1)成立,则可以推出P(n)成立. [第二数学归纳法]证明一个关于正整数n的命题P(n)成立: 证明一个或几个初值成立. 假设n=k或n≤k(k∈N+)时命题成立,证明n=k+1时命题成立.…
Fibonacci 数列 设f(x)=1,x∈{1,2}=f(x−1)+f(x−2),x∈[3,∞)\begin{aligned}f(x)&=1,\quad\quad\quad\quad\quad\quad\quad\quad\quad x\in\{1,2\}\\ &=f(x-1)+f(x-2),\quad x\in[3,∞) \end{aligned}f(x)​=1,x∈{1,2}=f(x−1)+f(x−2),x∈[3,∞)​ 则 f(x)f(x)f(x) 的通项公式为f(x)=15[(…
★题目描述 fibonacci 数列的递推公式是F(n) = F(n-1) + F(n-2)(n >= 2 且 n 为整数). 将这个递推式改为F(n) = aF(n-1) + bF(n-2)(n >= 2 且 n 为整数)时得到的是怎样的数列. 注意,这里我们依然令 F(0)=F(1)=1. ★输入格式 输入第一行三个正整数 q, a, b. 接下来有 q 行,每行一个自然数 n. 对于50%的数据,1 <= q.n <= 1000. 对于80%的数据,1 <= q.n &…
斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列” 用文字来说,就是费波那契数列由0和1开始,之后的费波那契系数就是由之前的两数相加而得出.首几个费波那契系数是: 0,1,1,2,3,5,8,13,21,34,55,89,144,233……(OEIS中的数列A000045) 特别指出:0不是第一项,而是第零项. [python@master2 test]$ mo…
题目描述 Winder 最近在学习 fibonacci 数列的相关知识.我们都知道 fibonacci 数列的递推公式是F(n) = F(n - 1) + F(n - 2)(n >= 2 且 n 为整数). Winder 想知道的是当我们将这个递推式改为F(n) = a * F(n - 1) + b * F(n - 2)(n >= 2 且 n 为整数)时我们得到的是怎样的数列.但是,Winder 很懒,所以只能由你来帮他来完成这件事. 注意,这里我们依然令 F(0)=F(1)=1. 输入格式…
Fibonacci: 0, 1, 1, 2, 3, 5, 8, 13, .... F[0] = 0; 1: gcd(Fn, Fm) = F[gcd(n, m)]; 当n - m = 1 或 2时满足,可用数学归纳法证明: 2: 特征方程为 x^2 = x + 1, 类Fibonacci数列的特征方程为:ax^2 = bx + c; aF[n] = bF[n - 1] + cF[n - 2]; 3: (证明方法为补项和数学归纳法) f[0] + f[1] + ... + f[n] = f[n +…
0. Intro \[f_n=\begin{cases} 0 & (n=0) \\ 1 & (n=1) \\ f_{n-1}+f_{n-2} & (n>1) \end{cases}\] 这个就是众所周知的Fibonacci数列 用生成函数可以求出该数列的通项公式 1. 生成函数 生成函数分为普通型生成函数(OGF)和指数型生成函数(EGF),后面默认提到生成函数都是OGF 若有一数列 \(A: a_0,a_1,a_2,a_3,\cdots\) ,则 \(A\) 的生成函数为…
/************************************************* * Fibonacci 数列算法分析 *************************************************/ #include<iostream> #include<stdio.h> #include<vector> #include<cmath> #include<time.h> using namespace s…