贝叶斯决策一直很有争议,今年是贝叶斯250周年,历经沉浮,今天它的应用又开始逐渐活跃,有兴趣的可以看看斯坦福Brad Efron大师对其的反思,两篇文章:“Bayes'Theorem in the 21st Century”和“A250-YEAR ARGUMENT:BELIEF, BEHAVIOR, AND THE BOOTSTRAP”.俺就不参合这事了,下面来看看朴素贝叶斯分类器. 有时我们想知道给定一个样本时,它属于每个类别的概率是多少,即P(Ci|X),Ci表示类别,X表示测试样本,有了概…
摘要:这里用的是词袋模型,即一个词在文档中出现不止一次,每个单词可以出现多次. 1.准备数据:切分文本 前一节过滤网站恶意留言中词向量是给定的,下面介绍如何从文本文档中构建自己的词列表 先举例说明,在python提示符下输入: >>> mySent='This book is the best book on python or M.L. I have ever laid eyes upon.' >>> mySent.split() ['This', 'book', '…
<Machine Learning in Action>-- 白话贝叶斯,"恰瓜群众"应该恰好瓜还是恰坏瓜 概率论,可以说是在机器学习当中扮演了一个非常重要的角色了.Taoye对概率论知识的掌握目前也还仅仅只是停留在本科期间所接触到的,而且还都已经忘了不少.快速的复习回顾一下之后,用来理解机器学习中的贝叶斯算法,还是足够的. 手撕机器学习系列文章目前已经更新了支持向量机SVM.决策树.K-近邻(KNN),现在我们来玩玩贝叶斯算法,其他机器学习系列文章可根据自己需求来食用(持…
本章主要介绍了分类算法里面的一种最基本的分类器:朴素贝叶斯算法(NB),算法性能正如英文缩写的一样,很NB,尤其在垃圾邮件检测领域,关于贝叶斯的网上资料也很多,这里推荐那篇刘未鹏写的http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/,作者深入浅出的概述了贝叶斯背后的思想跟应用领域,关于其理论方面可以参考斯坦福大学NG的machine learning cs299的讲义,关于代码实现可以参考一些开源的包或者自己动手写(之前,闲来无…
<Machine Learning in Action>-- 浅谈线性回归的那些事 手撕机器学习算法系列文章已经肝了不少,自我感觉质量都挺不错的.目前已经更新了支持向量机SVM.决策树.K-近邻(KNN).贝叶斯分类,读者可根据以下内容自行"充电"(持续更新中): <Machine Learning in Action>-- 剖析支持向量机,单手狂撕线性SVM: https://www.zybuluo.com/tianxingjian/note/1755051…
在手撕机器学习系列文章的上一篇,我们详细讲解了线性回归的问题,并且最后通过梯度下降算法拟合了一条直线,从而使得这条直线尽可能的切合数据样本集,已到达模型损失值最小的目的. 在本篇文章中,我们主要是手撕Logistic回归,这个在李航老师的<统计学习方法>一书中也叫做为逻辑斯谛回归.听到回归一词,有的读者可能会想,上一篇线性回归求解的是拟合问题,这篇文章手撕的是Logistic回归,会不会也是一个拟合问题?只不过使用到的算法原理不同而已,而求解的问题是一致的??? 其实不然,Logistic回归…
作者: 寒小阳 && 龙心尘 时间:2016年2月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50629608 http://blog.csdn.net/longxinchen_ml/article/details/50629613 声明:版权所有,转载请联系作者并注明出处 1.引言 前两篇博文介绍了朴素贝叶斯这个名字读着"萌蠢"但实际上简单直接高效的方法,我们也介绍了一下贝叶斯方法的一些细节.按照老规矩…
http://blog.csdn.net/han_xiaoyang/article/details/50629608 作者: 寒小阳 && 龙心尘 时间:2016年2月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50629608 http://blog.csdn.net/longxinchen_ml/article/details/50629613 声明:版权所有,转载请联系作者并注明出处 1.引言 前两篇博文介绍了朴素贝叶…
该系列来自于我<人工智能>课程回顾总结,以及实验的一部分进行了总结学习机 垃圾分类是有监督的学习分类最经典的案例,本文首先回顾了概率论的基本知识.则以及朴素贝叶斯模型的思想.最后给出了垃圾邮件分类在Matlab中用朴素贝叶斯模型的实现 1.概率 1.1 条件概率 定义:事件B发生的情况下,事件A发生的概率记作条件概率P(A|B)P(A|B) P(A|B)=P(A∧B)P(B) P(A|B)=\frac{P(A\land B)}{P(B)} 条件概率也叫后验概率.无条件概率也叫先验概率(在没有不…
1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 1.2 距离公式 两个样本的距离可以通过如下公式计算,又叫欧式距离. 简单理解这个算法: 这个算法是用来给特征值分类的,是属于有监督学习的领域,根据不断计算特征值和有目标值的特征值的距离来判断某个样本是否属于某个目标值. 可以理解为根据你的邻居来判断你属于哪个类别. 1.3 API sklea…