最近在看sparse and redundant representations这本书,进度比较慢,不过力争看过的都懂,不把时间浪费掉.才看完了不到3页吧,书上基本给出了稀疏表达的概念以及传统的求法.我也用书中的例子来引入吧. 1:矩阵A(n*m),其中n远远小于m,一副图片经过缩小或者模糊处理导致该图片所占用的空间变小了,此时用向量b来表示,A表示图片所经过的处理,X代表原图片,那么这个就可以表示成为: Ax=b 2:因为A是欠定的,一般情况下x的解有很多种,而我们要的是那种最稀疏的x.个人理…