机器学习中的 ground truth】的更多相关文章

维基百科关于 ground truth的解释: [Ground truth] 大致为: 在统计学和机器学习中:在机器学习中ground truth表示有监督学习的训练集的分类准确性,用于证明或者推翻某个假设.有监督的机器学习会对训练数据打标记,试想一下如果训练标记错误,那么将会对测试数据的预测产生影响,因此这里将那些正确打标记的数据成为ground truth. 以下引用自知乎lee philip的例子example on 知乎 1. 错误的数据 标注数据1 ( (84,62,86) , 1),…
ground truth就是参考标准,一般用来做误差量化.比方说要根据历史数据预测某一时间的温度,ground truth就是那个时间的真实温度.error就是(predicted temperature - real temprature). 在全监督学习中,数据是有标签(label)的的,以(x, t)的形式出现,其中x是输入数据,t是label.正确的t标签是ground truth, 错误的标签则不是. 由模型函数的数据则是由(x, y)的形式出现的.其中x为之前的输入数据,y为模型预测…
ground truth就是参考标准,一般用来做误差量化.比方说要根据历史数据预测某一时间的温度,ground truth就是那个时间的真实温度.error就是(predicted temperature - real temprature).在监督学习中,数据是有标签(label)的的,以(x, t)的形式出现,其中x是输入数据,t是label.正确的t标签是ground truth, 错误的标签则不是.由模型函数的数据则是由(x, y)的形式出现的.其中x为之前的输入数据,y为模型预测的值.…
转自ground truth的含义 ground truth在不同的地方有不同的含义,下面是参考维基百科的解释,ground truth in wikipedia. 1.在统计学和机器学习中 在机器学习中ground truth表示有监督学习的训练集的分类准确性,用于证明或者推翻某个假设.有监督的机器学习会对训练数据打标记,试想一下如果训练标记错误,那么将会对测试数据的预测产生影响,因此这里将那些正确打标记的数据成为ground truth. 小面是引用知乎lee philip的例子exampl…
Playing for Data: Ground Truth from Computer Games ECCV 2016 Project Page:http://download.visinf.tu-darmstadt.de/data/from_games/index.html arXiv Paper : http://arxiv.org/pdf/1608.02192.pdf 摘要: 本文有意思哦,从游戏中的视频帧中得到新的训练数据,为什么用这些数据呢?众所周知,最近的计算机视觉很大程度上依赖于…
最近在做一个目标检测算法,训练时用到了 bootstrap 策略,于是我将PASCAL的 Ground Truth 格式的读取函数从 Matlab 改写为 C++.PASCAL 的标注格式为: # PASCAL Annotation Version 1.00 Image filename : "对应图片路径"Image size (X x Y x C) : 宽 x 高 x 3Database : "数据库名称"Objects with ground truth :…
机器学习中的相似性度量(Similarity Measurement) 在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance). 采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否.在其他领域也经常见到它的影子, 现在对常用的相似性度量作一个总结. 目录: 1. 欧氏距离 2. 曼哈顿距离 3. 切比雪夫距离 4. 闵可夫斯基距离 5. 标准化欧氏距离 6. 马氏距离 7. 夹角余弦…
机器学习中的范数规则化之(二)核范数与规则项参数选择 zouxy09@qq.com http://blog.csdn.net/zouxy09 上一篇博文,我们聊到了L0,L1和L2范数,这篇我们絮叨絮叨下核范数和规则项参数选择.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 三.核范数 核范数||W||*是指矩阵奇异值的和,英文称呼叫Nuclear Norm.这个相对于上面火热的L1和L2来说,可能大家就会陌生点.那它是干嘛用的呢?霸气登场:约束Low-Rank(…
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是"minimizeyour error…
L1正则会产生稀疏解,让很多无用的特征的系数变为0,只留下一些有用的特征 L2正则不让某些特征的系数变为0,即不产生稀疏解,只让他们接近于0.即L2正则倾向于让权重w变小.见第二篇的推导. 所以,样本量比较少,但是特征特别多的时候,可以用L1正则,把一部分不显著的特征系数变成0: 而样本量多,特征偏少的时候,可以使用L2正则,保留住所有的特征,只是让系数变小,接近于0. 机器学习中的范数规则化之(一)L0.L1与L2范数 :http://blog.csdn.net/zouxy09/article…