opencv4 mask_rcnn模型调(c++)】的更多相关文章

昨天有人问我关于调用mask_rcnn模型的问题,忽然想到最近三个月都没用opencv调用训练好的mask_rcnn模型了,今晚做个尝试,所以重新编译了 opencv4,跑个案例试试 #include <fstream> #include <sstream> #include <iostream> #include <string.h> #include <opencv2/dnn.hpp> #include <opencv2/imgproc…
通过上一节的探索,我们会得到几个相对比较满意的模型,本节我们就对模型进行调优 网格搜索 列举出参数组合,直到找到比较满意的参数组合,这是一种调优方法,当然如果手动选择并一一进行实验这是一个十分繁琐的工作,sklearn提供了GridSearch-网格搜索方法,我们只需要将每一个参数的取值告诉它,网格搜索将使用交叉验证方法对所有情况进行验证,并返回结果最好的组合. from sklearn.model_selection import GridSearchCV param_grid = [ # 1…
TF-IDF模型调参 1. 调TfidfVectorizer的参数 ngram_range, min_df, max_df: 上一篇博客调了ngram_range这个参数,得出了ngram_range=(1, 4)时效果最好这个结论,并在线上验证了下. 本篇博客继续调其他的参数.考虑到训练的速度,先将ngram_range设置为(1, 1),调min_df: min_df train-mlogloss val-mlogloss 1 0.103793 0.406085 2 0.1091895 0.…
深度学习模型的调优,首先需要对各方面进行评估,主要包括定义函数.模型在训练集和测试集拟合效果.交叉验证.激活函数和优化算法的选择等. 那如何对我们自己的模型进行判断呢?——通过模型训练跑代码,我们可以分别从训练集和测试集上看到这个模型造成的损失大小(loss),还有它的精确率(accuracy). 目录 前言 1.定义模型函数 2.交叉验证(Cross-validation) 3.优化算法 4.激活函数(activation) 5.dropout 6.early stopping 模型训练实战案…
一.一般的模型调参原则 1.调参前提:模型调参其实是没有定论,需要根据不同的数据集和不同的模型去调.但是有一些调参的思想是有规律可循的,首先我们可以知道,模型不准确只有两种情况:一是过拟合,而是欠拟合.过拟合是指模型过于复杂,欠拟合是指模型过于简单. 2.查找资料:调参时应该知道每一个参数的默认值是多少,其增大或者减小会使模型更加复杂还是更加简单. 3.调参可以使用两种方法:1.学习曲线 2.网格搜索 学习曲线只能对参数一个一个进行调整,可以观察参数的增大或者减小具体对模型产生怎样的影响:网格搜…
GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大的时候可以使用一个快速调优的方法——坐标下降.它其实是一种贪心算法:拿当前对模型影响最大的参数调优,直到最优化:再拿下一个影响最大的参数调优,如此下去,直到所有的参数调整完毕.这个方法的缺点就是可能会调到局部最优而不是全局最优,但是省时间省力,巨大的优势面前,还是试一试吧,后续可以再拿bagging…
主要工作 本周主要是跑了下n-gram模型,并调了下参数.大概看了几篇论文,有几个处理方法不错,准备下周代码实现一下. xgboost参数设置为: param = {'max_depth': 6, 'eta': 0.1, 'eval_metric': 'mlogloss', 'silent': 1, 'objective': 'multi:softprob', 'num_class': 8, 'subsample': 0.5, 'colsample_bytree': 0.85} n-gram模型…
Colab连接与数据预处理 Colab连接方法见上一篇博客 数据预处理: import pandas as pd import pickle import numpy as np # 训练数据和测试数据路径 train_path = './security_train.csv' test_path = './security_test.csv' # 将csv格式的训练数据处理为txt文本,只包含文件标签和api序列 def read_train_file(path): labels = [] #…
# Create the Timeline object, and write it to a json from tensorflow.python.client import timeline tl = timeline.Timeline(run_metadata.step_stats) ctf = tl.generate_chrome_trace_format() with tf.gfile.GFile("timeline.json", 'w') as f: f.write(ct…
我们在分析数据时,经常会碰到一种数据,它是由时间累积起来的,并按照时间顺序排列的一系列观测值,我们称为时间序列,它有点类似于重复测量数据,但是区别在于重复测量数据的时间点不会很多,而时间序列的时间点非常多,并且具有长期性.这种数据资料首先先后顺序不能改变,其次观测值之间不独立,因此普通的分析方法不再适用,需要专门的时间序列模型,这种时间序列分析关注的不再是变量间的关系,而是重点考察变量在时间方面的发展变化规律. 时间序列模型根据分析思想不同可以分为传统时间序列模型和现代时间序列模型 1.传统时间…