题目链接 CF739E 题解 抓住个数的期望即为概率之和 使用\(A\)的期望为\(p[i]\) 使用\(B\)的期望为\(u[i]\) 都使用的期望为\(p[i] + u[i] - u[i]p[i]\) 当然是用越多越好 但是他很烦地给了个上限,我们就需要作出选择了 有一个很明显的\(O(n^3)\)的\(dp\),显然过不了 但我们有一个很好的\(WQS\)二分 我们非常想去掉这个上限 那就去掉吧,但是每用一次都要付出一个代价 我们二分这个代价,当使用次数恰好为为\(a\)和\(b\)时就是…
我是从其他博客里看到这题的,上面说做法是wqs二分套wqs二分?但是我好懒呀,只用了一个wqs二分,于是\(O(nlog^2n)\)→\(O(n^2logn)\) 首先我们有一个\(O(n^3)\)的暴力\(DP\),转移好写,形式优美,但复杂度不对 该怎样发现它的凸性质呢 1.打表√ 2.冷静分析一波,每一种球肯定是越多越好,于是我们先固定选择\(a\)个普通球,然后那\(b\)个大师球肯定是从大到小挑选.这样的话每多选一个,新增的收益就会下降一点,也就是说这是个上凸函数.(口胡如果假的话,就…
本来没有打算写题解的,时间有点紧.但是这个wqs二分看了好久才明白还是写点东西吧. 题解就直接粘dg的了: 赤(red) 本题来自codeforces 739E,加大了数据范围. 首先对一只猫不会扔两个及以上数量的同种食物.最优方案一定把食物用完. 每只猫对期望的贡献可以根据期望的线性性分开算的,不投喂,则这只猫贡献为0; 只喂干脆面,贡献为pi;只喂豆干,贡献为qi;两种都喂,贡献为pi+qi-pi*qi 算法1: 对于每只猫,只有4种情况,所以我们大力枚举一下,单组数据O(4^n),可以通过…
法一: 匹配问题,网络流! 最大费用最大流,S到A,B流a/b费0,A,B到i流1费p[i]/u[i],同时选择再减p[i]*u[i]? 连二次!所以i到T流1费0流1费-p[i]*u[i] 最大流由于ab都选择完最优 最大费用,所以不会第一次走-p[i]*u[i] 法二: DP怎么写? dp[i][j][k] 优化? 一定选择a.b个! 恰好选择a.b个? WQS二分! 一定是满足凸函数的性质的 所以选择若干个a,代价ca,求dp[i][b] 再次WQS二分! 所以选择若干个a,b,代价ca,…
根据期望的线性性答案就是捕捉每一只精灵的概率之和. 捕捉一只精灵的方案如下: 1.使用一个\(A\)精灵球,贡献为\(A[i]\) 2.使用一个\(B\)精灵球,贡献为\(B[i]\) 3.使用一个\(A\)精灵球和一个\(B\)精灵球,贡献为\(A[i]+B[i]-A[i]*B[i]\) 然后我们可以这样建图: 源点\(S\)向两个精灵球连容量为精灵球数量,费用为\(0\)的边. \(A\)精灵球向i连容量为\(1\),费用为\(A[i]\)的边. \(B\)精灵球向i连容量为\(1\),费用…
纪念合格考爆炸. 其实这个题之前就写过博客了,qwq但是不小心弄丢了,所以今天来补一下. 首先,一看到球的个数的限制,不难相当用网络流的流量来限制每个球使用的数量. 由于涉及到最大化期望,所以要使用最大费用最大流. 我们新建两个点\(ss,tt\),分别表示两种球. 那么我们现在考虑应该怎么计算期望呢. 首先,如果假设如果对于一个怪物用一个球,那么连边也就比较容易了 对于一个怪物\(x\) 我们\(ss -> x\),费用为\(p[i]\),流量为1.表示一个球在一个怪物上只能用一次. \(tt…
论文 提出问题 在某些题目中,强制规定只能选 \(k\) 个物品,选多少个和怎么选都会影响收益,问最优答案. 算法思想 对于上述描述的题目,大部分都可以通过枚举选择物品的个数做到 \(O(nk^2)\) 或 \(O(nk)\) 的 \(\mathrm{DP}\),如果没有选择个数的限制的话,复杂度大概会降为 \(O(n)\) 级别. 先不考虑数量限制. 假设要最小化权值. 还是拿题说吧:给定长度为 \(n\) 的正整数序列,要求将该序列划分为 \(k\) 段,记每段之和为 \(sum(i)\),…
今天模拟赛有一道林克卡特树,完全没有思路 赛后想了一想,不就是求\(k+1\)条不相交的链,使其权值之和最大嘛,傻了. 有一个最裸的\(DP\),设\(f[i][j][k]\)表示在以\(i\)为根的子树中,选了\(j\)条链,\(k=0\)表示\(i\)不在链上,\(k=1\)表示\(i\)是链的一端,\(k=2\)表示\(i\)在链的中间 这样就随便转移了,就是个\(O(nk^2)\)的树上背包 然后呢,又傻了,这能怎么优化? 我先在这里Orz一下大佬BLUESKY007,没有学过wqs二分…
其实是一个还算 trivial 的知识点吧--早在 2019 年我就接触过了,然鹅当时由于没认真学并没有把自己学懂,故今复学之( 1. 决策单调性 引入:在求解 DP 问题的过程中我们常常遇到这样的问题:我们列出了一个 \(dp\) 状态转移方程式形如 \(dp_i=\min\limits_{j<i}dp_j+w(j+1,i)\) 或类似的形式,暴力转移时间复杂度 \(\mathcal O(n^2)\) 过不去,但是你发现这里的代价函数 \(w(l,r)\) 有一些比较好的性质,譬如单调性或凹凸…
点此看题面 大致题意: 你有两种捕捉球(分别为\(A\)个和\(B\)个),要捕捉\(n\)个神奇宝贝,第\(i\)个神奇宝贝被第一种球捕捉的概率是\(s1_i\),被第二种球捕捉的概率是\(s2_i\),问在最优策略下期望捕捉到的神奇宝贝数量. \(WQS\)二分 这应该是一道比较经典的\(WQS\)二分题(毕竟是 \(WQS\)二分套\(WQS\)二分). \(WQS\)二分套\(WQS\)二分 如果你知道\(WQS\)二分,应该就不难想到\(WQS\)二分一个代价\(C1\),表示每使用一…