Keras vs. PyTorch in Transfer Learning】的更多相关文章

We perform image classification, one of the computer vision tasks deep learning shines at. As training from scratch is unfeasible in most cases (as it is very data hungry), we perform transfer learning using ResNet-50 pre-trained on ImageNet. We get…
参考:https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html 以下是两种主要的迁移学习场景 微调convnet : 与随机初始化不同,我们使用一个预训练的网络初始化网络,就像在imagenet 1000 dataset上训练的网络一样.其余的训练看起来和往常一样. 将ConvNet作为固定的特征提取器 : 在这里,我们将冻结所有网络的权重,除了最后的全连接层.最后一个完全连接的层被替换为一个具有随机权重的新层,…
引自官方:  Transfer Learning tutorial Ng在Deeplearning.ai中讲过迁移学习适用于任务A.B有相同输入.任务B比任务A有更少的数据.A任务的低级特征有助于任务B.对于迁移学习,经验规则是如果任务B的数据很小,那可能只需训练最后一层的权重.若有足够多的数据则可以重新训练网络中的所有层.如果重新训练网络中的所有参数,这个在训练初期称为预训练(pre-training),因为事先利用任务A的权重初始化.在预训练的基础上更新权重,那么这个过程叫微调(fine t…
We strongly recommend that you pick either Keras or PyTorch. These are powerful tools that are enjoyable to learn and experiment with. We know them both from the teacher’s and the student’s perspective. Piotr has delivered corporate workshops on both…
论文可以在arxiv下载,老板一作,本人二作,也是我们实验室第一篇CCF A类论文,这个方法我们称为TFusion. 代码:https://github.com/ahangchen/TFusion 解决的目标是跨数据集的Person Reid 属于无监督学习 方法是多模态数据融合 + 迁移学习 实验效果上,超越了所有无监督Person reid方法,逼近有监督方法,在部分数据集上甚至超越有监督方法 本文为你解读CVPR2018 TFusion 转载请注明作者梦里茶 Task 行人重识别(Pers…
在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型:然后利用这个学习到的模型来对测试文档进行分类与预测.然而,我们看到机器学习算法在当前的Web挖掘研究中存在着一个关键的问题:一些新出现的领域中的大量训练数据非常难得到.我们看到Web应用领域的发展非常快速.大量新的领域不断涌现,从传统的新闻,到网页,到图片,再到博客.播客等等.传统的机器学习需要对每个领域都标定大量训练数据,这将会耗费大量的人力与物力.而没有大量的标注数据,会使得很多与学习相关研究与应用无法开展…
资源:http://www.cse.ust.hk/TL/ 简介: 一个例子: 关于照片的情感分析. 源:比如你之前已经搜集了大量N种类型物品的图片进行了大量的人工标记(label),耗费了巨大的人力物力,构建了源情感分类器(即输入一张照片,可以分析出照片的情感).注:这里的情感不是指人物的情感,而是指照片中传达出来的情感,比如这张照片是积极的还是消极的. 目标:因为不同类型的物品,他们在源数据集中的分布也是不同的,所以为了维护一个很好的分类器性能,经常需要增加新的物品.传统的方式是搜集大量N+1…
原文地址:http://blog.csdn.net/miscclp/article/details/6339456 在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型:然后利用这个学习到的模型来对测试文档进行分类与预测.然而,我 们看到机器学习算法在当前的Web挖掘研究中存在着一个关键的问题:一些新出现的领域中的大量训练数据非常难得到.我们看到Web应用领域的发展非常快速.大量新的领域不断涌现,从传统的新闻,到网页,到图片,再到博客.播客等等.传统的机器学习需要…
用深度学习的跨情感分类的迁移学习 情感分析主要用于预测人们在自然语言中表达的思想和情感. 摘要部分:two types of sentiment:sentiment polarity and politeness. 语义极性和politeness (礼貌用语) 数据集:在线资源数据库 训练源领域和目标领域的混合数据导致性能极大的提升. Transfer learning methods could be very useful in performing predictiond inpecial…
读论文系列:Deep transfer learning person re-identification arxiv 2016 by Mengyue Geng, Yaowei Wang, Tao Xiang, Yonghong Tian Transfer Learning 旧数据训练得到的分类器,在新的数据上重新训练,从而在新数据上取得比较好的表现,新数据与旧数据有相似的地方,但具有不同的分布. Fine tuning一般步骤 这是InceptionV4的图示 移除Softmax分类层 换成与…