1. 摘要 传统的 L 层神经网络只有 L 个连接,DenseNet 的结构则有 L(L+1)/2 个连接,每一层都和前面的所有层进行连接,所以称之为密集连接的网络. 针对每一层网络,其前面所有层的特征图被当作它的输入,这一层的输出则作为其后面所有层的输入. DenseNet 有许多优点:消除了梯度消失问题.加强了特征传播.鼓励特征复用并且大大减少了参数的数量. 2. 介绍 随着卷积神经网络变得越来越深,一个新的问题出现了:输入信息或者梯度在很多层之间传递的过程中会渐渐消失并且被洗掉.很多最近的…
一.读前说明 1.论文"Densely Connected Convolutional Networks"是现在为止效果最好的CNN架构,比Resnet还好,有必要学习一下它为什么效果这么好. 2.代码地址:https://github.com/liuzhuang13/DenseNet 3.这篇论文主要参考了Highway Networks,Residual Networks (ResNets)和GoogLeNet,所以在读本篇论文之前,有必要读一下这几篇论文,另外还可以看一下Very…
毕设终于告一段落,传统方法的视觉做得我整个人都很奔溃,终于结束,可以看些搁置很久的一些论文了,嘤嘤嘤 Densely Connected Convolutional Networks 其实很早就出来了,cvpr 2017 best paper 觉得读论文前,还是把dense net的整个网络结构放到http://ethereon.github.io/netscope/#/editor 上面可视化看一下,会更加容易理解,总体这篇论文很好理解 上图是一个5层的dense block,每个dense…
论文标题:Densely Connected Convolutional Networks 论文作者:Gao Huang Zhuang Liu Laurens van der Maaten  Kilian Q. Weinberger 论文地址:https://arxiv.org/pdf/1608.06993.pdf DenseNet 的GitHub地址:https://github.com/liuzhuang13/DenseNet 参考的 DenseNet 翻译博客:https://zhuanl…
目录 0. Paper link 1. Overview 2. DenseNet Architecture 2.1 Analogy to ResNet 2.2 Composite function 2.3 Dense block and Transition layer 2.4 Growth rate 2.5 Bottleneck layers 2.6 Compression 2.7 Global Network Architecture 3. Experiments 4. Discussion…
目录 黄高老师190919在北航的报告听后感 故事背景 网络结构 Dense block DenseNet 过渡层 成长率 瓶颈层 细节 实验 发表在2017 CVPR. 摘要 Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between…
- Dense blocks where each layer is connected to every other layer in feedforward fashion(緊密塊是指每一個層與每個其他層都以前向的方式相連接) - Alleviates vanishing gradient, strengthens feature propagation, encourages feature reuse(缓解梯度消失,加强特征传播,鼓励特征重用)…
Densely Connected Convolutional Networks,CVPR-2017-best paper之一(共两篇,另外一篇是apple关于GAN的paper),早在去年八月 DenseNets的paper就发布在arXiv上了. 就CNN的发展来说,2017注定被DenseNets给占了(12年开始,经典的CNN网络,AlexNet,VGG,GoogLenet系列,ResNet系列),除了AlexNet,VGG,GoogLenet,ResNet都是在传统CNN连接方式上做了…
ResNet, AlexNet, VGG, Inception: Understanding various architectures of Convolutional Networks by KOUSTUBH        this blog from: http://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/ Convolutional neural networks are fantastic for visual…
Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan[‡] & Andrew Zisserman[§] Visual Geometry Group, Department of Engineering Science, University of Oxford {karen,az}@robots.ox.ac.uk 用于大规模图像识别的深度卷积网络 Karen Simonyan[‡] &am…