seqgan leakgan】的更多相关文章

seqgan https://blog.csdn.net/yinruiyang94/article/details/77675586 leakgan https://www.leiphone.com/news/201709/QRJPQr3jCOtY7ncQ.html…
SeqGAN: Sequence generative adversarial nets with policy gradient  AAAI-2017 Introduction :  产生序列模拟数据来模仿 real data 是无监督学习中非常重要的课题之一.最近, RNN/LSTM 框架在文本生成上取得了非常好的效果,最常见的训练方法是:给定上一个 token,推测当前 token 的最大化似然概率.但是最大似然方法容易受到 “exposure bias” 的干扰:the model ge…
1. 背景GAN在之前发的文章里已经说过了,虽然现在GAN的变种越来越多,用途广泛,但是它们的对抗思想都是没有变化的.简单来说,就是在生成的过程中加入一个可以鉴别真实数据和生成数据的鉴别器,使生成器G和鉴别器D相互对抗,D的作用是努力地分辨真实数据和生成数据,G的作用是努力改进自己从而生成可以迷惑D的数据.当D无法再分别出真假数据,则认为此时的G已经达到了一个很优的效果. 它的诸多优点是它如今可以这么火爆的原因: - 可以生成更好的样本 - 模型只用到了反向传播,而不需要马尔科夫链 - 训练时不…
文本生成哪家强?上交大提出基准测试新平台 Texygen 2018-02-12 13:11测评 新智元报道 来源:arxiv 编译:Marvin [新智元导读]上海交通大学.伦敦大学学院朱耀明, 卢思迪,郑雷,郭家贤, 张伟楠, 汪军,俞勇等人的研究团队最新推出Texygen平台,这是一个支持开放域文本生成模型研究的基准平台.Texygen不仅实现了大部分的文本生成模型,而且还覆盖了一系列衡量生成文本的多样性.质量和一致性的评测指标. 项目地址: https://github.com/geek-…
1.基础知识 创始人的介绍: “GANs之父”Goodfellow 38分钟视频亲授:如何完善生成对抗网络?(上) “GAN之父”Goodfellow与网友互动:关于GAN的11个问题(附视频) 进一步了解,应用领域扩展: 生成对抗网络GANs理解(附代码)    对该文章的转载补充:对生成对抗网络GANs原理.实现过程.应用场景的理解(附代码),另附:深度学习大神文章列表 简单理解与实验生成对抗网络GAN AI科普贴:生成对抗网络(GANs)为什么这么火? GAN Zoo: The GAN Z…
机器不学习 jqbxx.com-专注机器学习,深度学习,自然语言处理,大数据,个性化推荐,搜索算法,知识图谱 今年开始接触chatbot,跟着各种专栏学习了一段时间,也读了一些论文,在这里汇总一下.感觉是存在一些内在的趋势的.只是要找到一个当下切实可行又省时省力的方案好像不太容易. 论文摘要 <Information Extraction over Structured Data: Question Answering with Freebase> 本文利用查询KB替代查询数据库,可以更好的理…
GAN 自从被提出以来,就广受大家的关注,尤其是在计算机视觉领域引起了很大的反响,但是这么好的理论是否可以成功地被应用到自然语言处理(NLP)任务呢? Ian Goodfellow 博士 一年前,网友在 reddit 上提问道,生成式对抗网络 GAN 是否可以应用到自然语言处理上.GAN 理论的提出者,OpenAI 的科学家,深度学习理论奠基人之一 Yoshua Bengio 的得意门生 Ian Goodfellow 博士回答了这个问题: GANs 目前并没有应用到自然语言处理(NLP)中,因为…
原文翻译 导读 这篇文章的主要工作在于应用了对抗训练(adversarial training)的思路来解决开放式对话生成(open-domain dialogue generation)这样一个无监督的问题. 其主体思想就是将整体任务划分到两个子系统上,一个是生成器(generative model),利用seq2seq式的模型以上文的句子作为输入,输出对应的对话语句:另一个则是一个判别器(discriminator),用以区分在前文条件下当前的问答是否是和人类行为接近,这里可以近似地看作是一…
论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN ICCV 2017 Paper: http://openaccess.thecvf.com/content_ICCV_2017/papers/Dai_Towards_Diverse_and_ICCV_2017_paper.pdf Implementation(Torch): https://github.com/doubledaibo/gancapt…
Ian J. Goodfellow 论文:https://arxiv.org/abs/1406.2661 两个网络:G(Generator),生成网络,接收随机噪声Z,通过噪声生成样本,G(z).D(Dicriminator),判别网络,判别样本是否真实,输入样本x,输出D(x)代表x真实概率,如果1,100%真实样本,如果0,代表不可能是真实样本. 训练过程,生成网络G尽量生成真实样本欺骗判别网络D,判别网络D尽量把G生成样本和真实样本分别开.理想状态下,G生成样本G(z),使D难以判断真假,…
本文转自: https://mp.weixin.qq.com/s?__biz=MzA5MDMwMTIyNQ==&mid=2649290778&idx=1&sn=9816b862e167c4792f4251c199fcae16&chksm=8811ee5cbf66674a54e87bc3cef4937da6e5aac7599807754731ab777d359b219ac6de97616e&mpshare=1&scene=2&srcid=0219a2e…
本文转自:http://www.jianshu.com/p/2acb804dd811 GAN论文整理 作者 FinlayLiu 已关注 2016.11.09 13:21 字数 1551 阅读 1263评论 0喜欢 7 原始GAN Goodfellow和Bengio等人发表在NIPS 2014年的文章Generative adversary network,是生成对抗网络的开创文章,论文思想启发自博弈论中的二人零和博弈.在二人零和博弈中,两位博弈方的利益之和为零或一个常数,即一方有所得,另一方必有…
0. introduction GAN模型最早由Ian Goodfellow et al于2014年提出,之后主要用于signal processing和natural document processing两方面,包含图片.视频.诗歌.一些简单对话的生成等.由于文字在高维空间上不连续的问题(即任取一个word embedding向量不一定能找到其所对应的文字),GAN对于NLP的处理不如图像的处理得心应手,并且从本质上讲,图片处理相较于NLP更为简单(因为任何动物都可以处理图像,但只有人类可以…
背景 在视觉设计领域中,设计师们往往会因为一些简单需求付出相当多的时间,比如修改文案内容,设计简单的海报版式,针对不同机型.展位的多尺寸拓展等.这些工作需要耗费大量的时间.人力成本(5~6张/人日),但对设计师的进步成长起到的作用却非常有限.另一方面,精准营销是未来的大趋势,在大流量背景下,首页的海报资源展位需要展示“千人千面”的效果,这对海报的生产效率也提出了非常高的要求.所以,我们美团外卖技术团队尝试结合AI技术,来协助设计师避免这种低收益.高重复的任务,同时低成本.高效率.高质量地完成海报…
really-awesome-gan A list of papers and other resources on General Adversarial (Neural) Networks. This site is maintained by Holger Caesar. To complement or correct it, please contact me at holger-at-it-caesar.com or visit it-caesar.com. Also checkou…
论文地址:https://arxiv.org/pdf/1406.2661.pdf 1.简介: GAN的两个模型 判别模型:就是图中右半部分的网络,直观来看就是一个简单的神经网络结构,输入就是一副图像,输出就是一个概率值,用于判断真假使用(概率值大于0.5那就是真,小于0.5那就是假),真假也不过是人们定义的概率而已. 生成模型:生成模型要做什么呢,同样也可以看成是一个神经网络模型,输入是一组随机数Z,输出是一个图像,不再是一个数值.从图中可以看到,会存在两个数据集,一个是真实数据集,这好说,另一…
GAN系列学习(1)——前生今世 DCGAN.WGAN.WGAN-GP.LSGAN.BEGAN原理总结及对比 [Learning Notes]变分自编码器(Variational Auto-Encoder,VAE) 2. GAN的原理: GAN的主要灵感来源于博弈论中零和博弈的思想,应用到深度学习神经网络上来说,就是通过生成网络G(Generator)和判别网络D(Discriminator)不断博弈,进而使G学习到数据的分布,如果用到图片生成上,则训练完成后,G可以从一段随机数中生成逼真的图像…
GAN:通过 将 样本 特征 化 以后, 告诉 模型 哪些 样本 是 黑 哪些 是 白, 模型 通过 训练 后, 理解 了 黑白 样本 的 区别, 再输入 测试 样本 时, 模型 就可以 根据 以往 的 经验 判断 是 黑 还是 白. 与 这些 分类 的 算法 不同, GAN 的 基本 原理 是, 有两 个 相生相克 的 模型 Generator 和 Discriminator,Generator 随机 生成 样本, Discriminator 将 真实 样本 标记 为 Real, 将 Gene…
生成式对抗模型GAN (Generativeadversarial networks) 是Goodfellow等[1]在 2014年提出的一种生成式模型,目前已经成为人工智能学界一个热门的研究方向,著名学者Yann Lecun甚至将其称为“过去十年间机器学习领域最让人激动的点子".GAN的基本思想源自博弈论的二人零和博弈,由一个生成器和一个判别器构成,通过对抗学习的方式来训练,目的是估测数据样本的潜在分布并生成新的数据样本.在图像和视觉计算.语音和语言处理.信息安全.棋类比赛等领域,GAN正在被…
出处:2018 AAAI SourceCode:https://github.com/salu133445/musegan abstract: (写得不错 值得借鉴)重点阐述了生成音乐和生成图片,视频及语音的不同.首先音乐是基于时间序列的:其次音符在和弦.琶音(arpeggios).旋律.复音等规则的控制之下的:同时一首歌曲是多track的.总之不能简单堆叠音符.本文基于GAN提出了三种模型来生成音乐:jamming model, the composer model and the hybri…
出处:arXiv: Artificial Intelligence, 2016(一年了还没中吗?) Motivation 使用GAN+RNN来处理continuous sequential data,并训练生成古典音乐 Introduction In this work, we investigate the feasibility of using adversarial training for a sequential model with continuous data, and eva…
1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话说,如果在一个策略组合上,当所有其他人都不改变策略时,没有人会改变自己的策略,则该策略组合就是一个纳什均衡. B站上有一个关于”海滩2个兄弟卖雪糕“形成纳什均衡的视频,讲的很生动. 不管系统中的双方一开始处于什么样的状态,只要系统中参与竞争的个体都是”理性经济人“,即每个人在考虑其他人的可能动作的基…
Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章主要介绍Gan的应用篇,3,主要介绍图像应用,4, 主要介绍文本以及医药化学其他领域应用 原理篇请看上两篇 https://www.cnblogs.com/Libo-Master/p/11167804.html https://www.cnblogs.com/Libo-Master/p/11169198.html 图像应用 https://www.cnblogs.com/Libo-Master/p…
注:本文来自机器之心的PaperWeekly系列:万字综述之生成对抗网络(GAN),如有侵权,请联系删除,谢谢! 前阵子学习 GAN 的过程发现现在的 GAN 综述文章大都是 2016 年 Ian Goodfellow 或者自动化所王飞跃老师那篇.可是在深度学习,GAN领域,其进展都是以月来计算的,感觉那两篇综述有些老了.最近发现有一篇最新的 GAN 综述论文(How Generative Adversarial Networks and Their Variants Work: An Over…
100篇必读的NLP论文 100 Must-Read NLP 自己汇总的论文集,已更新 链接:https://pan.baidu.com/s/16k2s2HYfrKHLBS5lxZIkuw 提取码:x7tn This is a list of 100 important natural language processing (NLP) papers that serious students and researchers working in the field should probabl…
1 简介 文本生成是自然语言处理中一个重要的研究领域,具有广阔的应用前景.当前主流的用来进行文本生成的模型主要是Seq2Seq模型,通常利用maximum likelihood和teacher forcing进行训练,生成文本的质量也大都通过validation perplexity来衡量. 目前的文本生成模型也存在着一些问题,其对于perplexity的优化来说效果可能很好,但却不能保证生成质量足够好的文本,因为其并没有针对输出明确定义一个损失函数来提高结果质量.而本文对此做了改变,选择用GA…