TensorFlow车牌识别实践(1)】的更多相关文章

本文对公开的文章进行验证,从环境搭建到运行到结果分析. 1,文章:基于TensorFlow的车牌号识别系统 文章(译文) http://www.cnblogs.com/Jsmile2017/p/6802331.html 原文: http://matthewearl.github.io/2016/05/06/cnn-anpr/ 源码: https://github.com/matthewearl/deep-anpr 2,搭建开发环境 python3.5+tensor flow1.2.1+numpy…
http://www.cnblogs.com/jackkwok/p/7228021.html 1,运行准备 按照https://github.com/matthewearl/deep-anpr说明的用法,运行过程分以下4步: (1)准备10万个背景图片 (2)合成1000个测试车牌图像 (3)训练,以取得权重参数 (4)车牌检测 1.1准备背景图片 下载http://vision.princeton.edu/projects/2010/SUN/SUN397.tar.gz,36GB大小.好在服务器…
[本文出自天外归云的博客园] Windows下Anaconda+Tensorflow环境部署 1. 安装Anaconda. 2. 开始菜单 > 所有程序 > Anaconda 3 (64-bit) > Anaconda Prompt > 执行命令: conda create -n tensorflow python=3.5 至此创建了一个名字叫做tensorflow的虚拟环境,并指定了这个虚拟环境的python为3.5版本. 3. 激活虚拟环境,执行命令: activate ten…
这个是我使用的车牌识别开源项目的地址:https://github.com/zeusees/HyperLPR Python 依赖 Anaconda for Python 3.x on Win64 Keras (>2.0.0) Theano(>0.9) or Tensorflow(>1.1.x) Numpy (>1.10) Scipy (0.19.1) OpenCV(>3.0) Scikit-image (0.13.0) PIL 准备工作:安装以下依赖包 pip install…
车牌识别作为一种常见的图像识别的应用场景,已经是一个非常成熟的业务了,在传统的车牌识别中,可以使用字符分割+字符识别的方式来进行车牌识别,而深度学习兴起后,出现了很多端到端的车牌识别模型,不用分割字符,直接输入车牌图片即可识别出车牌字符.2019年1月5日百度深度学习线下技术公开课PaddlePaddle TechDay第一期演讲则邀请了百度认证布道师胡晓曼老师分享基于PaddlePaddle最新版本Fluid作用于车牌识别模型训练的实践. 以下为胡晓曼讲师的演讲实录: PaddlePaddle…
目标检测---搬砖一个ALPR自动车牌识别的环境 参考License Plate Detection and Recognition in Unconstrained Scenarios@https://www.cnblogs.com/greentomlee/p/10863363.html@https://github.com/sergiomsilva/alpr-unconstrained 环境The current version was tested in an Ubuntu 16.04 m…
基于HyperLPR的中文车牌识别 Bolg:https://blog.csdn.net/lsy17096535/article/details/78648170 https://www.jianshu.com/p/7ab673abeaae GitHub:https://github.com/zeusees/HyperLPR HyperLPR 简介 HyperLPR是开源的基于深度学习实现的高性能中文车牌识别库,由北京智云视图科技有限公司开发,与较为流行的开源的其他框架相比,它的检测速度.鲁棒性…
概要 HyperLRP是一个开源的.基于深度学习高性能中文车牌识别库,由北京智云视图科技有限公司开发,支持PHP.C/C++.Python语言,Windows/Mac/Linux/Android/IOS 平台.本文将根据官网指引,进行一个车牌识别的入门探索. 特性 速度快 720p ,单核 Intel 2.2G CPU (macbook Pro 2015)平均识别时间低于100ms 基于端到端的车牌识别无需进行字符分割 识别率高,仅仅针对车牌ROI在EasyPR数据集上,0-error达到 95…
​NOTES:现如今,芯片行业无比火热啊,无论是前景还是钱景,国家芯片战略的发布,公司四五十万的年薪,着实令人非常的向往,为了支持芯片设计者,集成了工作.科研.竞赛于一体的<基于 SoC 的卷积神经网络车牌识别系统设计>专栏项目,这是在一位海归教授的带领之下的整个团队辛勤耕耘的结晶,希望大家能够在理论结合实践的指导之下,不断地提高自己的数字芯片设计技术能力. 1.项目引言 工作求职:能够在简历上添加一笔较大的项目,集成了 AI.SoC.系统级.FPGA.ARM 以及 Verilog.C.Pyt…
NOTES: 这是第三届全国大学生集成电路创新创业大赛 - Arm 杯 - 片上系统设计挑战赛(本人指导的一个比赛).主要划分为以下的 Top5 重点.难点.亮点.热点以及创新点:1.通过 Arm Cortex-M3 CPU 软核 IP 在 Xilinx Artix-7 纯 FPGA 平台上构建一个 SoC 片上系统,该系统一方面能够通过 HDMI 接口,在显示屏上实时显示 OV5640 摄像头所采集的车牌视频数据(比特流的生成是通过交叉编译的方式,即 Verilog 编译与 C 编译):2.该…
在上篇文档中作者已经简单的介绍了EasyPR,现在在本文档中详细的介绍EasyPR的开发过程. 正如淘宝诞生于一个购买来的LAMP系统,EasyPR也有它诞生的原型,起源于CSDN的taotao1233的一个博客,博主以读书笔记的形式记述了通过阅读“Mastering OpenCV”这本书完成的一个车牌系统的雏形. 这个雏形有几个特点:1.将车牌系统划分为了两个过程,即车牌检测和字符识别.2.整个系统是针对西班牙的车牌开发的,与中文车牌不同.3.系统的训练模型来自于原书.作者基于这个系统,诞生了…
我正在做一个开源的中文车牌识别系统,Git地址为:https://github.com/liuruoze/EasyPR. 我给它取的名字为EasyPR,也就是Easy to do Plate Recognition的意思.我开发这套系统的主要原因是因为我希望能够锻炼我在这方面的能力,包括C++技术.计算机图形学.机器学习等.我把这个项目开源的主要目的是:1.它基于开源的代码诞生,理应回归开源:2.我希望有人能够一起协助强化这套系统,包括代码.训练数据等,能够让这套系统的准确性更高,鲁棒性更强等等…
<zw版·Halcon-delphi系列原创教程>简单的令人发指,只有10行代码的车牌识别脚本 简单的令人发指,只有10行代码的车牌识别脚本      人脸识别.车牌识别是opencv当中常见的例子和应用      Halcon当然也有,而且非常简单,甚至,简单的令人发指,核心代码才10行. 有经验的用户都知道,车牌识别,难点并非ocr识别,因为都是标准的几套字符,ocr很简单,有现成的数据库,自己采集.制作也不难      车牌识别,最大的难点,在于图像切割,由于现场光线.角度.以及位置.车…
这里的LPR的的几篇文章是之前项目的一些相关资料的整理,涉及实验室内部的资料就没有放上来,希望能对想了解这方面的同学,有所帮助,那怕了解个大概也好.知道整体的思路就好.当初就是一个人瞎摸索,走了很多的弯路,也算给其他人一点建议吧. 车牌识别LPR系统系列文章汇总: 车牌识别LPR(一)-- 研究背景 车牌识别LPR(二)-- 车牌特征及难点 车牌识别LPR(三)-- LPR系统整体结构 车牌识别LPR(四)-- 车牌定位 车牌识别LPR(五)-- 一种车牌定位法 车牌识别LPR(六)-- 字符分…
​第八篇:字符识别 车牌定位.车牌倾斜校正.车牌字符分割都是为车牌字符识别做的前提工作,这些前提工作直接关系到车牌识别系统的性能.车牌字符识别是车牌识别系统的核心部分,车牌字符识别的准确率是衡量车牌识别系统的一个很重要的指标. 一般字符识别的方法就是采用模式识别方法,简单的来说模式识别就是先通过提取输入模板的特征,然后通过模板的特征对样本进行分类,从而识别出样本.模式识别主要包括:数据采集.预处理.特征提取.特征匹配,其结构框架如图: 字符识别是模式识别的一个重要应用,首先提取待识别字符的特征:…
第四篇:车牌定位 车牌定位就是采用一系列图像处理或者数学的方法从一幅图像中将车牌准确地定位出来.车牌定位提取出的车牌是整个车牌识别系统的数据来源,它的效果的好坏直接影响到整个系统的表现,只有准确地定位出车牌,才会有后续的车牌分割与字符识别. 目前车牌定位有两大类.基于灰度.基于彩色. 基于灰度: 我们采用的是基于灰度的形态学的车牌定位:首先根据车牌区域中丰富的纹理特征,提取车牌图像中垂直方向的边缘并二值化.然后对得到的二值图像进行数学形态学(膨胀.腐烛.幵闭运算等)的运算,使得车牌区域形成一个闭…
第三篇:系统的整体架构 LPR系统大体上可由图像采集系统,图像处理系统,数据库管理系统三个子系统组成.它综合了通讯.信息.控制.传感.计算机等各种先进技术,构成一个智能电子系统. 图像采集系统:图像采集系统主要由传感器.辅助照明设备和图像采集设备组成,主要功能是采集车辆图像.当有车辆经过时会触发感应装置,感应装置一般为地感线圈,触发成功后摄像机或照相机会自动采集当前的图像,最后将采集到的图像传送到计算机或手持的嵌入式系统进行处理. 图像处理系统:图像处理系统即为本文主要讨论的算法处理模块,为整个…
第二篇:车牌的特征及难点 2.1  对我国车牌的认识 我国目前使用的汽车牌号标准是 2007 年开始实施的<中华人民共和国机动车号牌>GA36-2007(2010 年修订).根据 GA36-2007 对机动车牌号编排规则规定,我国汽车的车牌构造特点如下: 汽车车牌号的编排规则:我国的标准车辆车牌是由一个省份汉字(军警车牌为其他汉字)后跟字母或阿拉伯数字组成的 7 个字序列.标准车牌的的具体排列格式是:X1X2·X3X4X5X6X7,X1是各省.直辖市的简称或军警,X2是英文字母,代表该汽车所在…
在年尾用了几天的时间将2014年的所有工作都总结了一遍,将之前的文档综合了下. 以下是LPR系统,车牌识别的一些总结资料. 第一篇:LPR研究背景 汽车的出现改变了以往出行徒步和以马代步的时代,极大地改变了人们的生活方式,扩大了人们的活动范围,加强了人与人之间的交流.全世界的汽车拥有量呈爆炸性增长,汽车虽方便了我们的出行,但同时也造成了城市交通压力,应用现代科技解决汽车不断增长而出现的交通问题已经成为一项重要的研究课题,智能交通系统应孕而出. 智能交通系统(Intelligent Transpo…
http://blog.csdn.net/jinshengtao/article/details/17954427   <Mastering Opencv ...读书笔记系列>车牌识别(II) http://blog.csdn.net/jinshengtao/article/details/17883075/   <Mastering Opencv ...读书笔记系列>车牌识别(I) <Mastering Opencv ...读书笔记系列>车牌识别(II) 标签: 车牌…
http://blog.csdn.net/jinshengtao/article/details/17883075/  <Mastering Opencv ...读书笔记系列>车牌识别(I) http://blog.csdn.net/jinshengtao/article/details/17954427   <Mastering Opencv ...读书笔记系列>车牌识别(II) Mastering Opencv ...读书笔记系列>车牌识别(I) 标签: 车牌分割svm西…
前言 学习了很长一段时间了,需要沉淀下,而最好的办法就是做一个东西来应用学习的东西,同时也是一个学习的过程. 概述     OpenCV的全称是:Open Source Computer Vision Library.OpenCV是一个基于(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows和Mac OS操作系统上.它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算…
一.移动端车牌识别产品描述 移动端车牌识别软件是基于移动平台的OCR识别应用程序,支持Android/IOS等多种主流移动操作系统.该产品只需通过智能手机或Pad的摄像头对准车牌,无需拍照,实现自动采集车牌信息轻松扫一扫识别出车牌号的功能. 二.移动端车牌识别应用背景 现在我国交通执法用PDA机使用越来越普及了,由于人口越来越多,车辆越来越多,对人与车的管理必须提高效率,如果在这些终端机上能够集成移动端车牌识别.驾驶证识别,行驶证识别,证件识别等用OCR技术研发出的功能,必然省时省力,对于维护交…
移动端车牌识别技术,是在OCR光学字符识别技术的基础上研发的用来识别汽车号牌特征信息的图像识别技术.在国内,该项技术由北京易泊时代携手清华大学成功地将"国家863计划"项目成果--"文字图像识别技术TH-OCR"产业化,真正实现了TH-OCR技术与市场应用的完美结合. 一.移动端车牌识应用背景 随着我国警务通.停车场手持收费机等移动终端的使用越来越普及,车辆越来越多,对车的管理要高效也是必然的,如果在这些终端上能够集成车牌识别功能,必然省时省力,对于维护交通安全和城…
核心内容:车牌识别.OCR识别技术.移动端车牌识别.手机端车牌识别.安卓车牌识别.Android车牌识别.iOS车牌识别 一.移动端车牌识别OCR技术研发原理 移动端车牌识别是基于OCR识别的一种应用.移动端车牌识别OCR技术识别过程包括图像采集.图像预处理.车牌定位.字符分割.字符识别.输出结果等一系列算法运算,其流程如下图所示: 其中图像采集是通过视频流识别,对视频进行解帧识别,移动端车牌识别OCR技术的识别速度为毫秒级别,体验起来比扫二维码还快. 二.移动端车牌识别OCR技术应用背景 随着…
javaCV图像处理系列: 一.javaCV图像处理之1:实时视频添加文字水印并截取视频图像保存成图片,实现文字水印的字体.位置.大小.粗度.翻转.平滑等操作 二.javaCV图像处理之2:实时视频添加图片水印,实现不同大小图片叠加,图像透明度控制 三.opencv图像处理3:使用opencv原生方法遍历摄像头设备及调用(方便多摄像头遍历及调用,相比javacv更快的摄像头读取速度和效率,方便读取后的图像处理) 四.opencv图像处理系列:国内车辆牌照检测识别系统(万份测试准确率99.7%以上…
本文主题:移动端车牌识别.行驶证识别OCR为共享汽车APP增添技术色彩 本文关键词:车牌识别,证件识别,移动端车牌识别,行驶证识别,手机车牌识别,驾驶证识别 近两年,随着共享单车以及共享电车的兴起,有些公司又相继推出共享汽车等平台,给广大用户带来了极大的便利. 或许有很多人会问:什么是共享汽车?共享汽车,是指许多人合用一辆车,即开车人对车辆只有使用权,而没有所有权,有点类似于在租车行里短时间包车.它手续简便,打个电话或通过网上就可以预约订车.共享汽车一般是通过某个公司来协调车辆,并负责车辆的保险…
一.移动端车牌识别应用背景 (技术交流:18701686857  QQ:283870550) 随着经济水平的不断提高,汽车数量的不断激增为汽车管理带来了不小的难度.路边违章停车的现象越来越频繁.现在,车牌识别已经成为每个城市的车辆管理重点手段之一,有效.准确.及时的车牌识别可以方便警务人员的交通执法.停车场车辆管理等工作.伴随着智能终端以及4G技术的快速普及与发展,移动互联网时代已经全面爆发,出现了基于Android.iOS平台的移动端车牌识别sdk,完美集成核心车牌识别算法,为智慧停车客户提供…
牌识别(License Plate Recognition,LPR) 是视频图像识别技术在智能交通领域中的一个模块.车牌识别运用OCR技术,将视频流或图片中的汽车牌照从复杂的应用场景中提取并识别出来,通过车牌提取.图像预处理.特征提取.车牌字符识别等模块,识别车辆牌号.颜色等信息 车牌识别应用场景一:移动端车牌识别 无论是租车O2O,在线二手车交易,还是共享出行app,易泊车牌识别sdk都能简化你的产品流程,提升用户操作成功率.移动互联时代,更高效地交互方式,可以帮助你的产品更好地占据市场,赢得…
移动端车牌识别ocr系统优点: 1.识别速度快:高度优化的车牌定位和识别算法,识别时间≤50毫秒(200万图片). 2.识别率:白天识别率≥99.7%:夜间识别率≥98%. 3.识别速度:单张图片识别时间≤50毫秒(200万图像). 4.像素宽度:60-400像素宽度. 5.特征识别:车牌颜色.车标类型.车身颜色. 6.车牌类型:普通蓝牌.普通黄牌(单层).双层黄牌.新式军车车牌.新式武警车牌.使馆车牌.农用车牌等各种规格汽车号牌. 7.专注于移动端车牌识别ocr软件的研发:文通是专业的OCR产…