MIT Scene Parsing Benchmark简介 Scene parsing is to segment and parse an image into different image regions associated with semantic categories, such as sky, road, person, and bed. MIT Scene Parsing Benchmark (SceneParse150) provides a standard trainin…
论文源址:https://arxiv.org/pdf/1612.01105.pdf tensorflow代码:https://github.com/hellochick/PSPNet-tensorflow 基于PSPNet101的钢铁分割实验:https://github.com/fourmi1995/IronSegExperiment-PSPNet 摘要 对于不非特殊条件的场景解析仍十分困难.该文利用金字塔池化模型,融合了图像中不同区域的上下文信息. 介绍 分割可以预测完全理解场景,预测标签,…
论文地址:https://arxiv.org/pdf/1612.01105.pdf源码地址:https://github.com/hszhao/PSPNet 来自:Semantic Segmentation--Pyramid Scene Parsing Network(PSPNet)论文解读 <Pyramid Scene Parsing Network>论文笔记 What:PsPNet主要是通过金字塔池化提取多尺度信息.按论文的描述:更好的提取全局上下文信息,同时利用局部和全局信息,使得场景识…
添加启动游戏过渡场景Default Splash Scene(Unity3D开发之十三) 猴子原创,欢迎转载.转载请注明: 转载自Cocos2Der-CSDN,谢谢! 原文地址: http://blog.csdn.net/cocos2der/article/details/44099095 Unity5个人版会添加Unity Logo作为启动画面,咱们既然没花钱,打个广告也应该.但Unity Logo结束后可以再添加一个自己的启动画面. 下面是添加一个简单的FadeIn->FadeOut过渡场景…
分类:Unity.C#.VS2015 创建日期:2016-03-29 一.场景视图(Scene View)导航 场景视图 (Scene View) 是你的交互式沙箱.你可以使用场景视图 (Scene View) 选择和放置环境.玩家.相机.敌人和所有其他游戏对象 (GameObjects). 在场景视图 (Scene View) 中调动和操纵对象是 Unity 最重要的一些功能,因此,能够迅速使用它们至关重要. 场景视图 (Scene View) 有一个导航控件集,可帮助你快速高效地四处移动.…
参考第一个回答:如何评价DeepMind最新提出的RelationNetWork 参考链接:Relation Network笔记  ,暂时还没有应用到场景中 LiFeifei阿姨的课程:CV与ML课程在线 论文:A simple neural network module for relational reasoning github代码: https://github.com/siddk/relation-network 摘抄一段: Visual reasoning是个非常重要的问题,由于Re…
今天,主要和大家分享一下最近研究的卷积网络和它的一些变种. 首先,介绍一下基础的卷积网络. 通过PPT上的这个经典的动态图片可以很好的理解卷积的过程.图中蓝色的大矩阵是我们的输入,黄色的小矩阵是卷积核(kernel,filter),旁边的小矩阵是卷积后的输入,通常称为feature map. 从动态图中,我们可以很明白的看出卷积实际上就是加权叠加. 同时,从这个动态图可以很明显的看出,输出的维度小于输入的维度.如果我们需要输出的维度和输入的维度相等,这就需要填充(padding). 现在我们来看…
语义分割--全卷积网络FCN详解   1.FCN概述 CNN做图像分类甚至做目标检测的效果已经被证明并广泛应用,图像语义分割本质上也可以认为是稠密的目标识别(需要预测每个像素点的类别). 传统的基于CNN的语义分割方法是:将像素周围一个小区域(如25*25)作为CNN输入,做训练和预测.这样做有3个问题: - 像素区域的大小如何确定 - 存储及计算量非常大 - 像素区域的大小限制了感受野的大小,从而只能提取一些局部特征 为什么需要FCN? 我们分类使用的网络通常会在最后连接几层全连接层,它会将原…
CVPR2020论文解读:手绘草图卷积网络语义分割 Sketch GCN: Semantic Sketch Segmentation with Graph Convolutional Networks 论文链接:https://arxiv.org/pdf/2003.00678.pdf 摘要 介绍了一种用于手绘草图语义分割和标注的图形卷积神经网络SketchGCN.我们将输入草图视为二维点集,并将笔划结构信息编码为图形节点/边缘表示.为了预测每个点的标签,我们的SketchGCN使用图卷积和全局分…
因果卷积(causal)与扩展卷积(dilated)之An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling author:gswycf 最近在看关于NLP(自然语言处理)方面的文章,(其实不是自己要看),anyway,看了一个“An Empirical Evaluation of Generic Convolutional and Recurrent Networ…
扩展Linux网络栈 来自Linux内核文档.之前看过这篇文章,一直好奇,问什么一条网络流会固定在一个CPU上进行处理,本文档可以解决这个疑问.为了更好地理解本文章中的功能,将这篇文章穿插入内. 简介 本文的描述了Linux网络栈中的一组补充技术,用于增加多处理器系统的并行性和提高性能. 描述的结束为: RSS: Receive Side Scaling RPS: Receive Packet Steering RFS: Receive Flow Steering Accelerated Rec…
摘要:FCN对图像进行像素级的分类,从而解决了语义级别的图像分割问题. 本文分享自华为云社区<全卷积网络(FCN)实战:使用FCN实现语义分割>,作者: AI浩. FCN对图像进行像素级的分类,从而解决了语义级别的图像分割(semantic segmentation)问题.与经典的CNN在卷积层之后使用全连接层得到固定长度的特征向量进行分类(全联接层+softmax输出)不同,FCN可以接受任意尺寸的输入图像,采用反卷积层对最后一个卷积层的feature map进行上采样, 使它恢复到输入图像…
from:https://blog.csdn.net/bea_tree/article/details/56678560 2017年02月23日 19:28:25 阅读数:6094 首先声明,文末彩蛋,不是笔者提问的 1 一句话总结 作者认为现有模型由于没有引入足够的上下文信息及不同感受野下的全局信息而存在分割出现错误的情景,于是,提出了使用global-scence-level的信息的pspnet,另外本文提出了引入辅助loss的ResNet优化方法. 2 网络结构 本文提出的网络结构简单来说…
EndpointSlices是一个令人兴奋的新API,它提供了Endpoints API的可扩展和可扩张的替代方案.EndpointSlice跟踪Pod服务后面的IP地址,端口,准备情况和拓扑信息.在Kubernetes(https://www.alauda.cn/product/detail/id/240.html) 1.19中,默认情况下从EndpointSlices中通过kube-proxy读取启用了此功能,而非Endpoints.尽管这个更改看起来不起眼,但它可以使大型群集中的可伸缩性得…
在测试MIT Scene Parsing Benchmark (SceneParse150)使用FCN网络时候,遇到Caffe错误. 遇到错误:不可识别的网络层crop 网络层 CreatorRegistry& registry = Registry();    CHECK_EQ(registry.count(type), 1) << "Unknown layer type: " << type        << " (known…
作者:周博磊链接:https://www.zhihu.com/question/51704852/answer/127120264来源:知乎著作权归作者所有,转载请联系作者获得授权. 图1. 这张图清楚说明了image classification, object detection, semantic segmentation, instance segmentation之间的关系. 摘自COCO dataset (https://arxiv.org/pdf/1405.0312.pdf) Se…
摘要 点云是一种重要的几何数据结构类型.由于其不规则的格式,大多数研究人员将此类数据转化为常规的三维体素网格或图像集合.然而,这使数据变得不必要的庞大,并导致问题.在本文中,我们设计了一种新型的直接处理点云的神经网络,它很好地考虑了点在输入中的排列不变性.我们的网络名为PointNet,为从目标分类.部分分割到场景语义分析等应用提供了一个统一的架构.虽然简单,但PointNet是非常高效和有效的.从经验上看,它表现出了与现有技术相当甚至更好的性能.从理论上讲,我们提供了分析,以了解网络学到了什么…
本文先对FCN的会议论文进行了粗略的翻译,使读者能够对论文的结构有个大概的了解(包括解决的问题是什么,提出了哪些方案,得到了什么结果).然后,给出了几篇博文的连接,对文中未铺开解释的或不易理解的内容作了详尽的说明.最后给出了FCN代码的详解(待更新). Fully Convolutional Networks for Semantic Segmentation 用于语义分割的全卷积网络 摘要 卷积网络是可以产生具有层次结构的特征的强大的视觉模型.我们展示了只通过由端到端,像素像素训练的卷积网络进…
接上一篇:AI:IPPR的数学表示-CNN基础结构进化(Alex.ZF.Inception.Res.InceptionRes). 抄自于各个博客,有大量修改,如有疑问,请移步各个原文.....  前言:AutoML-NasNet VGG结构和INception结构.ResNet基元结构的出现,验证了通过反复堆叠小型inception结构可以构建大型CNN网络,而构建过程可以通过特定的规则自动完成.自动完成大型网络的稀疏性构建出现了一定的人为指导,如Mobile.xception.Shuffle.…
U-Net: Convolutional Networks for Biomedical Image Segmentation U-Net:用于生物医学图像分割的卷积网络 摘要 要想成功地训练一个深度网络需要大量的数以千计的有标记的样本,这已经成为了业内共识.在本文中,我们提出了一种网络和相应的训练策略,它依赖于强大的数据扩充技术,以更有效地使用可用的有标记的样本.该体系结构由捕获context的contracting路径和实现精确定位的symmetric expanding路径构成.我们表明这…
学习语义分割反卷积网络DeconvNet 一点想法:反卷积网络就是基于FCN改进了上采样层,用到了反池化和反卷积操作,参数量2亿多,非常大,segnet把两个全连接层去掉,效果也能很好,显著减少了参数,只有290万,提升了性能 摘要 提出了一个创新的语义分割算法,反卷积网络.网络前几层用VGG16的结构.反卷积网络由反卷积层和反池化层组成,他们来实现像素级别的语义分割.我们把网络应用于输入图像得到每个结果,再将所有结果组合起来构成最终的语义分割图.这个方法可以降低现有的基于组合深度卷积网络和类别…
Inception V3网络(注意,不是module了,而是network,包含多种Inception modules)主要是在V2基础上进行的改进,特点如下: 将滤波器尺寸(Filter Size)较大的卷积分解成若干滤波器尺寸较小的卷积.根据作者在论文中提出的optimization ideas,大卷积总可以被分解成3*3卷积层序列,而且需要的话还可以进一步分解成更小的卷积,如n*1卷积,事实上,这比2*2卷积层更好.对大卷积层进行分解的好处显而易见,既可以加速计算(多余的计算能力可以用来加…
Rethinking the Inception Architecture for Computer Vision 原文链接 摘要 卷积网络是目前最新的计算机视觉解决方案的核心,对于大多数任务而言,虽然增加的模型大小和计算成本都趋向于转化为直接的质量收益(只要提供足够的标注数据去训练),但计算效率和低参数计数仍是各种应用场景的限制因素.目前,我们正在探索增大网络的方法,目标是通过适当的分解卷积和积极的正则化来尽可能地有效利用增加的计算 引言 深度卷积架构上的架构改进可以用来改善大多数越来越多地依…
论文源址:https://arxiv.org/abs/1611.06612 tensorflow代码:https://github.com/eragonruan/refinenet-image-segmentation 摘要 RefineNet是一种生成式的多路径增强网络,在进行高分辨率的预测时,借助远距离的残差连接,尽可能多的利用下采样过程中的所有信息.这样,通过前期卷积操作得到的细粒度特征可以增强能够获得图像更高层次信息更深的网络.RefineNet的组件基于残差连接,可以进行端到端的训练.…
PyTorch中的MIT ADE20K数据集的语义分割 代码地址:https://github.com/CSAILVision/semantic-segmentation-pytorch Semantic Understanding of Scenes through ADE20K Dataset. B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso and A. Torralba. International Journal o…
Dual Attention Network for Scene Segmentation 在本文中,我们通过 基于自我约束机制捕获丰富的上下文依赖关系来解决场景分割任务.       与之前通过多尺度特征融合捕获上下文的工作不同,我们提出了一种双重注意网络(DANet)来自适应地集成局部特征及其全局依赖性. 具体来说,我们在传统的扩张FCN之上附加两种类型的注意力模块,它们分别对空间和通道维度中的语义相互依赖性进行建模. 位置力关注模块通过所有位置处的特征的加权和来选择性地聚合每个位置处的特征…
  PHASERJS3 一.首先当然得有至少有二个场景sceneA.js,sceneB.js 二.从场景A传值到场景B二种方法 1)通过事件this.events.emit('event key',{objKey:objValue}); 从sceneA通过 ths.events.emit时传值到sceneB时有个需要特别注的事项就是,得把sceneB的 active设为 ture,否则因为 sceneB还未激活,是监听不到 events.on事件的!!! 2)通过场景启动this.scene.s…
平方已经开发了一些 Windows Phone 上的一些游戏,算不上什么技术大牛.在这里分享一下经验,仅为了和各位朋友交流经验.平方会逐步将自己编写的类上传到托管项目中,没有什么好名字,就叫 WPXNA 吧,最后请高手绕道而行吧,以免浪费时间.(为了突出重点和减少篇幅,有些示例代码可能不够严谨.) 场景,屏幕 这里的场景也就是屏幕或者页面,比如我们常说的主屏幕,主屏幕上通常有一个开始的按钮.平方创建了 Scene 类来表示一个屏幕,页面,场景.而 Scene 类中将包含我们之前所将到的一些类,比…
1. Scene 简介 游戏中我们看到/看不到的所有元素都是展示在场景之Scene上. 我们可以把场景比作放在地上的没盖纸箱,层Layer是纸箱里堆放的玻璃,Sprite等元素画在玻璃Layer上,这样我们从纸箱上往下看就能看到这一个场景.场景切换时,是更换不同的纸箱. 概括的说,导演管理N个场景,场景管理N个层,层管理N个精灵等等小的元素,每个精灵有N个动作Timer等等. 场景Scene直接继承了Node. 场景创建时,调用init方法初始化. 在主循环中先后执行场景的:onEnter ==…
一.首先当然得有至少有二个场景sceneA.js,sceneB.js 二.从场景A传值到场景B二种方法 1)通过事件this.events.emit('event key',{objKey:objValue}); 从sceneA通过 ths.events.emit时传值到sceneB时有个需要特别注的事项就是,得把sceneB的 active设为 ture,否则因为 sceneB还未激活,是监听不到 events.on事件的!!! 2)通过场景启动this.scene.start('gameB…