Miller Rabin 大素数测试】的更多相关文章

PS:本人第一次写随笔,写的不好请见谅. 接触MillerRabin算法大概是一年前,看到这个算法首先得为它的神奇之处大为赞叹,竟然可以通过几次随机数据的猜测就能判断出这数是否是素数,虽然说是有误差率,但是相对于他比其他素数判断的高效,真的是可以说是完美级.那时候忙于找工作,所以也没有细究,现在空下来终于对这个算法有了一定的理解. 先说两个定理: (1) 当x<p时,满足x^(p-1) % p = 1,说明x与p互质: (2) 当x<p时,满足x^2 % p = 1; x的解为 x = 1 或…
伪素数: 如果存在和n互素的正整数a满足a^(n-1)≡1(mod n),则n是基于a的伪素数. 是伪素数但不是素数的个数是非常非常少的,所以如果一个数是伪素数,那么他几乎是素数. Miller_Rabbin素数测试:随机选k个a进行a^(n-1)≡1(mod n)测试,如果都满足则判断n是素数. a^(n-1)%mod用快速幂计算.对于大数相乘(两个大于int的数相乘),中间结果可能溢出,所以需要用快速幂思想进行乘法取模. Miller_Rabbin的出错率为2^(-k). //Miller…
根据费马小定理: 对于素数n,a(0<a<n),a^(n-1)=1(mod n) 如果对于一个<n的正整数a,a^(n-1)!=1(mod n),则n必不是素数. 然后就可以随机生成  <n的数,如果都满足,那n就极有可能是素数. 看书上说,一次素数测试的成功率是 3/4,也就是失败率是1/4,那测m次是错误的概率为:(1/4)^m.可见m稍微大一点就基本不会出错. 但是还有一种数叫,卡迈克尔数. 卡迈克尔数: 一个合数n,对所有满足 gcd(b,n)=1的正整数b都有b^(n-1…
基本原理: 费尔马小定理:如果p是一个素数,且0<a<p,则a^(p-1)%p=1.        利用费尔马小定理,对于给定的整数n,可以设计素数判定算法,通过计算d=a^(n-1)%n来判断n的素性,当d!=1时,n肯定不是素数,当d=1时,n  很可能是素数. 二次探测定理:如果p是一个素数,且0<x<p,则方程x^2%p=1的解为:x=1或x=p-1.        利用二次探测定理,可以再利用费尔马小定理计算a^(n-1)%n的过程中增加对整数n的二次探测,一旦发现违背二…
Miller Robin算法 当要判断的数过大,以至于根n的算法不可行时,可以采用这种方法来判定素数. 用于判断大于2的奇数(2和偶数需要手动判断),是概率意义上的判定,因此需要做多次来减少出错概率. Template: typedef long long ll; ll kmul(ll a,ll b,ll mod) { ll res=0; while (b) { if (b&1) res=(res+a)%mod; a=(a+a)%mod; b>>=1; } return res; }…
我们首先看这样一个很简单的问题:判定正整数\(n\)是否为素数 最简单的做法就是枚举\(2\)到\(n\)的所有数,看是否有数是\(n\)的因数,时间复杂度\(O(n)\) 稍微优化一下发现只要枚举\(2\)到\(\sqrt{n}\)中的数就可以了 然后发现数据范围\(n\leq 10^{18}\),时间复杂度直接就死掉了QAQ 我们就要考虑新的方法了 首先引入两个定理 1.费马小定理 如果\(p\)是素数,且\(gcd(a,b)=1\),那么\(a^{p-1}\equiv 1(mod \ n)…
Miller-Rabin算法本质上是一种概率算法,存在误判的可能性,但是出错的概率非常小.出错的概率到底是多少,存在严格的理论推导. 一.费马小定理 假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p) 如果存在a<p,且a(p-1) % p != 1,则p肯定不是素数. 二.有限域上的平方根定理 三.Miller-Rabin算法 对于一个大数n,判断n是不是素数的时候,可以先考虑a(n-1)≡ 1(mod n) 对于n-1,一定可以拆分成2s+d: 可以从x = ad开始…
抄别人的 #include<stdio.h> #include<string.h> #include<algorithm> #include<stdlib.h> #include<time.h> #include<map> using namespace std; typedef long long ll; map<ll,int>m1; ll random(ll n) { return ((double)rand()/RA…
Senior PanⅡ Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others) Problem Description Senior Pan had just failed in his math exam, and he can only prepare to make up for it. So he began a daily task with Master Dong, D…
关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是素数,则n至少有一个(1, sqrt(n) ]范围内的素数因子 定理3:定义f(n)为不大于n的素数的个数,则 f(n) 近似等于 n/ln(n) (ln为自然对数) ,具体请参考here 求不超过n的素数                         本文地址 算法1:埃拉托斯特尼筛法,该算法的…