UVA 10288 Coupons 彩票 (数学期望)】的更多相关文章

链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1229 题意: 大街上到处在卖彩票,一元钱一张.购买撕开它上面的锡箔,你会看到一个漂亮的图案.图案有n种,如果你收集到所有n(n≤33)种彩票,就可以得大奖.请问,在平均情况下,需要买多少张彩票才能得到大奖呢?如n=5时答案为137/12. 分析: 已有k个图案,令s=k/n,拿一个…
题意:一种刮刮卡一共有n种图案,每张可刮出一个图案,收集n种就有奖,问平均情况下买多少张才能中奖?用最简的分数形式表示答案.n<=33. 思路:这题实在好人,n<=33.用longlong就可以表示分数了,不用去写大数. 假设现在已刮到k个图案了,刮到新图案的概率是(n-k)/n,即若要再收集一个新图案平均要刮s=n/(n-k)次.所以只需要穷举k=1 to n,累加s的和就行了.注意式子可以将分子n提取出来. #include <bits/stdc++.h> #define pi…
UVA 10288 - Coupons option=com_onlinejudge&Itemid=8&page=show_problem&category=482&problem=1229&mosmsg=Submission+received+with+ID+13896541" target="_blank" style="">题目链接 题意:n个张票,每张票取到概率等价,问连续取一定次数后,拥有全部的票的期…
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4514 题意: 有两个盒子各有n(1≤n≤2e5)个糖,每天随机选一个(概率分别为p,1-p),然后吃一颗糖.直到有一天,打开盒子一看,没糖了!输入n,p,求此时另一个盒子里糖的个数的数学期望. 分析: 根据期望的定义,不妨设最后打开第1个盒子,此时第2个盒子有i颗,则这之前打开过n…
题意:有两个盒子各有n个糖,每次随机选一个(概率分别为p,1-p),然后吃掉,直到有一次,你打开盒子发现,没糖了! 输入n,p,求另一个盒子里糖的个数的数学期望. 析:先不说这个题多坑,首先要用long double来实现高精度,我先用的double一直WA,后来看了题解是用long double, 改了,可一直改不对,怎么输出结果都是-2.00000,搞了一晚上,真是无语,因为我输入输出数据类型是long double, 结果一直不对 ,可能是我的编译器是C89的吧,和C语言,输入输出格式不同…
你住在村庄A,每天需要过很多条河到另一个村庄B上班,B在A的右边,所有的河都在A,B之间,幸运的是每条船上都有自由移动的自动船, 因此只要到达河左岸然后等船过来,在右岸下船,上船之后船的速度不变.现在问从A到B的期望时间是多少,假设在出发时船的位置都是 随机分布.人在 陆地上行走的速度为1. 根据数学期望的线性,过每条河的时间为L/v(到河边船刚好开)到3L/v(到河边船刚好开走)的均匀分布,因此期望过河时间为 (L+3L/v)/2=(2*L/v) 加上 D-sum(L) . #include…
Description Coupons in cereal boxes are numbered \(1\) to \(n\), and a set of one of each is required for a prize (a cereal box, of course). With one coupon per box, how many boxes on average are required to make a complete set of \(n\) coupons? Inpu…
https://vjudge.net/problem/UVA-10288 大街上到处在卖彩票,一元钱一张.购买撕开它上面的锡箔,你会看到一个漂亮的图案. 图案有n种,如果你收集到所有n(n≤33)种彩票,就可以得大奖. 请问,在平均情况下,需要买多少张彩票才能得到大奖呢? 答案以带分数形式输出 例:当n=5时 思路简单,就是输出麻烦 #include<cstdio> #include<cstring> #include<cmath> #include<algori…
题意:有n种纸片无限张,随机抽取,问平均情况下抽多少张可以保证抽中所有类型的纸片 题解:假设自己手上有k张,抽中已经抽过的概率为 s=k/n:那抽中下一张没被抽过的纸片概率为 (再抽一张中,两张中,三张中...)(1-s)*(1+2*s+3*s^3+...)=(1-s)*E   s*E = (s+2*s^2+3*s^3+...):则E-s*E = (1+s+s^2+s^3+...)(等比数列,且公比不可能为1)=1/(1-s) = n/(n-k)  所以总概率就是n*(1/n+1/(n-1)+.…
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3382 题意: 你住在村庄A,每天需要过很多条河到另一个村庄B上班.B在A的右边,所有的河都在中间.幸运的是,每条河上都有匀速移动的自动船,因此每当到达一条河的左岸时,只需等船过来,载着你过河,然后在右岸下船.你很瘦,因此上船之后船速不变.日复一日,年复一年,你问自己:从A到B,平均…