先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000,1\leq k\leq n,m\leq 50000$ 暴力做法 $O(Tnm\log\max(n,m))$ 不用说了,那有没有什么更好的做法呢? 我们定义一种函数叫莫比乌斯函数 $\mu$,它的定义是: 当 $n=1$ 时,$\mu(n)=1$ 当 $n$ 可以分解成 $p_1p_2...p_k$…
题目链接:P3455 [POI2007]ZAP-Queries 题意 给定 \(a,b,d\),求 \(\sum_{x=1}^{a} \sum_{y=1}^{b}[gcd(x, y) = d]\). 思路 莫比乌斯函数的一个性质: \[[x = 1] = \sum_{d|x} \mu(d)\] 设 \(a \le b\),对原式转化: \[\sum_{x=1}^{a} \sum_{y=1}^{b}[gcd(x, y) = d] \\ = \sum_{x=1}^{\lfloor \frac{a}{…
题目描述 Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency). He has alreadyfound out that whilst deciphering a message he will have to answer multiple queries of the form"for givenintegers aa , bb and dd , find the n…
https://www.luogu.org/problemnew/show/P3455 就是https://www.cnblogs.com/hehe54321/p/9315244.html里面的方法2了,升级版的整除分块,可以两个变量一起搞 预处理莫比乌斯函数的前缀和之后就可以每次$O(\sqrt{n}+\sqrt{m})$回答 那篇题解里面用了一个技巧:${\lfloor}\frac{{\lfloor}\frac{a}{b}{\rfloor}}{c}{\rfloor}={\lfloor}\fr…
传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rfloor\lfloor\frac{b}{n}\rfloor$$ 根据莫比乌斯反演定理可以推出$$f(n)=\sum_{n|k}\mu(\lfloor\frac{k}{n}\rfloor)g(k)$$ 那么可以发现$ans=f(d)$ 然后用推出来的结论带进去 $$ans=\sum_{d|k}\mu(\l…
题目大意: 给定\(n,m,k,\) 求 \[\sum\limits_{x=1}^n\sum\limits_{y=1}^m[gcd(x,y)==k]\] 莫比乌斯反演入门题,先进行一步转化,将每个\(x,y\)除以\(k\),则答案变为 \[\sum\limits_{x=1}^{\lfloor\frac{n}{k}\rfloor} \sum\limits_{y=1}^{\lfloor\frac{m}{k}\rfloor} [gcd(x,y)==1]\] 发现最右边的条件可以莫比乌斯反演 \[\s…
题意:求$\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==d]$(1<=a,b,d<=50000). 很套路的莫比乌斯反演. $\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==k]=\sum_{i=1}^{\lfloor \frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{k}\rfloor}[gcd(i,j)==1]$ 令f(n)为gcd是n的个数,g(n)为gcd是n或n的倍数的个数.…
题面 传送门:洛咕 Solution 这题比这题不懂简单到哪里去了 好吧,我们来颓柿子. 为了防止重名,以下所有柿子中的\(x\)既是题目中的\(d\) 为了方便讨论,以下柿子均假设\(b>=a\) 为了方便书写,以下除号均为向下取整 题目要求的显然是: \(\large \sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=x]\) 根据套路,我们这里要先把这个\(x\)除掉 \(\large \sum_{i=1}^{a/x}\sum_{j=1}^{b/x}[gcd(i,…
1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2262  Solved: 895[Submit][Status][Discuss] Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到你的帮助. Input 第一行包含一个正整数n,表示一共有n组询问.(1&…
[BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到你的帮助. 输入 第一行包含一个正整数n,表示一共有n组询问.(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个正整数,分别为a,b,d.(1<=d<=a,b<=50000) 输出 对于每组询问,输出到输出文件zap…
求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得到: answer = Σ μ(t)*⌊a'/t⌋*⌊b'/t⌋ ⌊a'/t⌋相等的是一段连续的区间, ⌊b'/t⌋同理, 而且数量是根号级别的 所以搞出μ的前缀和然后分块处理. ----------------------------------------------------------------…
题目 P3455 [POI2007]ZAP-Queries 解析 莫比乌斯反演. 给定\(n\),\(m\),\(d\),求\[\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=d]\] 那我们设\[f(x)=\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=x]\] 设 \[\begin{aligned} F(x)=& \sum_{x\mid i}f(k) \\Q =&\sum_{x\mid k}\sum_{i=1}^{n}\sum_{…
1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2951  Solved: 1293[Submit][Status][Discuss] Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到你的帮助. Input 第一行包含一个正整数n,表示一共有n组询问.(1…
bzoj 1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到你的帮助. Input 第一行包含一个正整数n,表示一共有n组询问.(1<=n<= 50000)接下来…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \((x,y)\) \(x\in [1,a],y\in [1,b]\) 满足 \(gcd(x,y)=i\) 的对数 那么答案就是 \(f(d)\) 构造一个函数 \(g(i)\) 表示 \((x,y)\) \(x\in [1,a],y\in [1,b]\) 满足 \(gcd(x,y)|i\) 的对数 于是…
BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到你的帮助. Input 第一行包含一个正整数n,表示一共有n组询问.(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个正整数,分别为a,b,d.(1<=d<=a,b<=50000) Output 对于每组询…
1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a ,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到你的帮助. Input 第一行包含一个正整数n,表示一共有n组询问.(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个 正整数,分别为a,b,d.…
https://www.luogu.org/problemnew/show/3455#sub http://www.lydsy.com/JudgeOnline/problem.php?id=1101 Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a ,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到你的帮助. Input 第一行包含一个正整数n,表示一共有n组询问.(1<=n<…
这应该是入坑莫比乌斯反演的第一道题了吧 其实题目让我们求的东西很简单,就是 \[ ans=\sum_{i=1}^{a}\sum_{j=1}^{b}\left [ gcd(i,j)=k \right ]\] 然后,显然,我们可以再化简一下,其实刚刚的式子就等价于 \[ans=\sum_{i=1}^{a/k}\sum_{j=1}^{b/k}\left [ gcd(i,j)=1 \right ]\] 但是,显然这个东西是十分不好算的 因为这是一道莫比乌斯反演的经典题,所以我们可以套一套 不妨设 \[f…
正解:莫比乌斯反演 解题报告: 传送门! 首先这题刚看到就很,莫比乌斯反演嘛,和我前面写了题解的那个一模一样的,所以这儿就不讲这前边的做法辣QAQ 但是这样儿还有个问题,就现在已知我每次都是要O(n)地做的,然后他还有Q个问题,这样复杂度显然就假了,就要想办法优化QAQ 这时候考虑到我们已经搞出来要求的式子长这样儿:∑μ(i)*⌊m/i,n/i⌋,这就很,整除分块昂! 所以预处理μ的时候顺便搞下前缀和,整除分块就能过去辣! #include<bits/stdc++.h> using names…
莫比乌斯函数 #include <iostream> #include <cstdio> #include <cmath> #include <cstring> #include <algorithm> #define ll long long using namespace std; const int MAXN = 500005; int T, a, b, k, miu[MAXN], prime[MAXN], tot, pre[MAXN];…
洛谷题目链接:[POI2007]TET-Tetris Attack 题目描述 A puzzle called "Tetris Attack" has lately become a very popular game in Byteotia. The game itself is highlysophisticated, so we shall only introduce its simplified rules: the player is given a stack of \(2…
洛谷题目链接:[POI2007]POW-The Flood 题意翻译 Description 你手头有一张该市的地图.这张地图是边长为 m∗n 的矩形,被划分为m∗n个1∗1的小正方形.对于每个小正方形,地图上已经标注了它的海拔高度以及它是否是该市的一个组成部分.地图上的所有部分都被水淹没了.并且,由于这张地图描绘的地面周围都被高山所环绕,洪水不可能自动向外排出.显然,我们没有必要抽干那些非该市的区域. 每个巨型抽水机可以被放在任何一个1∗1正方形上.这些巨型抽水机将持续地抽水直到这个正方形区域…
洛谷题目传送门 正解是树状数组维护dfn序上的前缀和,这样的思路真是又玄学又令我惊叹( 我太弱啦,根本想不到)Orz各路Dalao 今天考了这道题,数据范围还比洛谷的小,只有\(10^5\)(害我复制粘贴一波交上去RE),让我很放心地去想树剖了. 然而尴尬的是我不会树剖,却先学了LCT(再次暴露蒟蒻的本性) 树剖的模型是,把土路视为权值,有修改,然后要查询某节点到根节点的权值和.没有换根的话,边权直接视为点权. 然后我干脆直接用Splay维护链剖分算啦(其实就是弱化板的LCT,有点像我弹飞绵羊的…
题目传送门 MEG 题目描述 Byteotia has been eventually touched by globalisation, and so has Byteasar the Postman, who once roamedthe country lanes amidst sleepy hamlets and who now dashes down the motorways. But it is those strolls inthe days of yore that he re…
题面: https://www.luogu.org/problemnew/show/P3462 https://www.lydsy.com/JudgeOnline/problem.php?id=1110 https://szkopul.edu.pl/problemset/problem/y7tXjqVq0gPZjc8kPrscs2CJ/site/?key=statement 先打了个贪心.直接所有容器从大到小排序,按这个顺序处理容器,每个容器每次装能够装进且最大的砝码.用multiset维护.…
P3456 [POI2007]GRZ-Ridges and Valleys 题意翻译 给定一个地图,为小朋友想要旅行的区域,地图被分为n*n的网格,每个格子(i,j) 的高度w(i,j)是给定的.若两个格子有公共顶点,那么他们就是相邻的格子.(所以与(i,j)相邻的格子有(i-1, j-1),(i-1,j),(i-1,j+1),(i,j-1),(i,j+1),(i+1,j-1),(i+1,j),(i+1,j+1)).我们定义一个格子的集合S为山峰(山谷)当且仅当: 1.S的所有格子都有相同的高度…
[POI2007]MEG-Megalopolis 题目描述 Byteotia has been eventually touched by globalisation, and so has Byteasar the Postman, who once roamedthe country lanes amidst sleepy hamlets and who now dashes down the motorways. But it is those strolls inthe days of…
题目大意:求 \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[gcd(i,j)=c]\] 题解:学会了狄利克雷卷积. \[\epsilon=\mu \ast 1\] 将艾弗森表达式转化成卷积的形式,在调换求和顺序,消去不必要的和式.最后利用除法分块+预处理的莫比乌斯函数前缀和在 \(O(\sqrt n)\) 时间内单次回答询问. 代码如下 #include <bits/stdc++.h> using namespace std; typedef long lo…
题目传送门 pow 题意翻译 Description 你手头有一张该市的地图.这张地图是边长为 m∗n 的矩形,被划分为m∗n个1∗1的小正方形.对于每个小正方形,地图上已经标注了它的海拔高度以及它是否是该市的一个组成部分.地图上的所有部分都被水淹没了.并且,由于这张地图描绘的地面周围都被高山所环绕,洪水不可能自动向外排出.显然,我们没有必要抽干那些非该市的区域. 每个巨型抽水机可以被放在任何一个1∗1正方形上.这些巨型抽水机将持续地抽水直到这个正方形区域里的水被彻底抽干为止.当然,由连通器原理…