从极大似然估计的角度理解深度学习中loss函数 为了理解这一概念,首先回顾下最大似然估计的概念: 最大似然估计常用于利用已知的样本结果,反推最有可能导致这一结果产生的参数值,往往模型结果已经确定,用于反推模型中的参数.即在参数空间中选择最有可能导致样本结果发生的参数.因为结果已知,则某一参数使得结果产生的概率最大,则该参数为最优参数. 似然函数:\[ l(\theta) = p(x_1,x_2,...,x_N|\theta) = \prod_{i=1}^{N}{p(x_i|\theta)}\]…
End to end:指的是输入原始数据,输出的是最后结果,应用在特征学习融入算法,无需单独处理. end-to-end(端对端)的方法,一端输入我的原始数据,一端输出我想得到的结果.只关心输入和输出,中间的步骤全部都不管. 端到端指的是输入是原始数据,输出是最后的结果,原来输入端不是直接的原始数据,而是在原始数据中提取的特征,这一点在图像问题上尤为突出,因为图像像素数太多,数据维度高,会产生维度灾难,所以原来一个思路是手工提取图像的一些关键特征,这实际就是就一个降维的过程. 那么问题来了,特征…
知乎上的讨论:https://www.zhihu.com/question/43609045?sort=created 不过看的云里雾里,越看越糊涂. 直到看到了这个:http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html#transposed-convolution-arithmetic 讲的非常清楚非常好…
函数重载是指在同一作用域内,可以有一组具有相同函数名,不同参数列表(参数个数.类型.顺序)的函数,这组函数被称为重载函数.重载函数通常用来声明一组功能相似的函数,这样做减少了函数名的数量,避免了名字空间的污染,对于程序的可读性有很大的好处. 但是在 JS 如果不通过一些方法是无法实现重载的,可以从以下两个角度去理解. 1. 方法签名 方法签名指的是函数的名称加形参列表,并且通过函数的名称或者形参列表都可以区分出是不同的函数. JS 中通过形参是没有办法区分出不同的函数的,只能通过函数的名称区分出…
一.分类损失 1.交叉熵损失函数 公式: 交叉熵的原理 交叉熵刻画的是实际输出(概率)与期望输出(概率)的距离,也就是交叉熵的值越小,两个概率分布就越接近.假设概率分布p为期望输出,概率分布q为实际输出,H(p,q)为交叉熵,则: 有这样一个定理:当p=q时,交叉熵去的最小值.因此可以利用交叉熵比较一个分布与另一个分布的吻合情况.交叉熵越接近与熵,q便是针对p更好的逼近,实际上,模型的输出与期望输出越接近,交叉熵也会越小,这正是损失函数所需要的. 在对熵进行最小化时,将log2替换为log完全没…
深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/lilong117194/article/details/81542667 1. softmax层的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层…
现在深度学习在机器学习领域是一个很热的概念,不过经过各种媒体的转载播报,这个概念也逐渐变得有些神话的感觉:例如,人们可能认为,深度学习是一种能够模拟出人脑的神经结构的机器学习方式,从而能够让计算机具有人一样的智慧:而这样一种技术在将来无疑是前景无限的.那么深度学习本质上又是一种什么样的技术呢? 深度学习是什么 深度学习是机器学习领域中对模式(声音.图像等等)进行建模的一种方法,它也是一种基于统计的概率模型.在对各种模式进行建模之后,便可以对各种模式进行识别了,例如待建模的模式是声音的话,那么这种…
机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论中熵的定义.信息论认为: 确定的事件没有信息,随机事件包含最多的信息. 事件信息的定义为:\(I(x)=-log(P(x))\):而熵就是描述信息量:\(H(x)=E_{x\sim P}[I(x)]\),也就是\(H(x)=E_{x\sim P}[-log(P(x))]=-\Sigma_xP(x)l…
在自己完成的几个有关深度学习的Demo中,几乎都出现了batch_size,iterations,epochs这些字眼,刚开始我也没在意,觉得Demo能运行就OK了,但随着学习的深入,我就觉得不弄懂这几个基本的概念,对整个深度学习框架理解的自然就不够透彻,所以今天让我们一起了解一下这三个概念. 1.batch_size 深度学习的优化算法,用大白话来说其实主要就是梯度下降算法,而每次的参数权重更新主要有两种方法. (1)遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度 这种方法…
一.多层感知机MLP 1.MLP概述 对于含有单个隐含层的多层感知机(single-hidden-layer Multi-Layer Perceptron, MLP),可以将其看成是一个特殊的Logistic回归分类器,这个特殊的Logistic回归分类器首先通过一个非线性变换Φ(non-linear transformation)对样本的输入进行非线性变换,然后将变换后的值作为Logistic回归的输入.非线性变换的目的是将输入的样本映射到一个空间,在该空间中,这些样本是线性可分的.这个中间层…