AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中.AlexNet主要使用到的新技术点如下. (1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过了Sigmoid,成功解决了Sigmoid在网络较深时的梯度弥散问题.虽然ReLU激活函数在很久之前就被提出了,但是直到AlexNet的出现才将其发扬光大. (2)训练时使用Dropout随机忽略一部分神经元,以避免模型过拟合.Dropout虽有单独的论文论述,但是AlexNet将其实用化,通过实践…
 版权声明:本文为博主原创文章,欢迎转载,注明地址. https://blog.csdn.net/program_developer/article/details/79430119 一.LRN技术介绍: Local Response Normalization(LRN)技术主要是深度学习训练时的一种提高准确度的技术方法.其中caffe.tensorflow等里面是很常见的方法,其跟激活函数是有区别的,LRN一般是在激活.池化后进行的一种处理方法.LRN归一化技术首次在AlexNet模型中提出这…
http://stats.stackexchange.com/questions/145768/importance-of-local-response-normalization-in-cnn caffe 解释: The local response normalization layer performs a kind of “lateral inhibition” by normalizing over local input regions.双边抑制.看起来就像是激活函数 几种解释以上链…
CNN是工具,在图像识别中是发现图像中待识别对象的特征的工具,是剔除对识别结果无用信息的工具. ImageNet Classification with Deep Convolutional Neural Networks http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks http://caffe.berkeleyvision.org/tutorial/…
LRN全称为Local Response Normalization,即局部响应归一化层,LRN函数类似DROPOUT和数据增强作为relu激励之后防止数据过拟合而提出的一种处理方法.这个函数很少使用,基本上被类似DROPOUT这样的方法取代,见最早的出处AlexNet论文对它的定义, <ImageNet Classification with Deep ConvolutionalNeural Networks> i:代表下标,你要计算像素值的下标,从0计算起 j:平方累加索引,代表从j-i的…
HInton第9课,这节课没有放论文进去.....如有不对之处还望指正.话说hinton的课果然信息量够大.推荐认真看PRML<Pattern Recognition and Machine Learning>. 摘自PRML中22页. 正文: 一.提高泛化方法的概述 在这部分中,将会介绍通过减少(当一个模型的数据表现能力大大的超过训练时提供的数据而产生的)过拟合来提高模型的泛化能力,将会介绍不同的方法去控制网络的数据表达能力,并介绍当我们使用这样一种方法的时候如何设置元参数,然后给出一个通过…
1. 偏差与方差 - 机器学习算法泛化性能分析 在一个项目中,我们通过设计和训练得到了一个model,该model的泛化可能很好,也可能不尽如人意,其背后的决定因素是什么呢?或者说我们可以从哪些方面去改进从而使下次得到的model更加令人满意呢? ”偏差-方差分解(bias-variance decomposition)“是解释学习算法泛化能力性能的一种重要工具.偏差-方差分解试图对学习算法的期望泛化错误率进行拆解. 假设测试样本为x,yd 为 x 在数据集中的标记(注意,有可能出现噪声使得 y…
梯度中心化GC对权值梯度进行零均值化,能够使得网络的训练更加稳定,并且能提高网络的泛化能力,算法思路简单,论文的理论分析十分充分,能够很好地解释GC的作用原理   来源:晓飞的算法工程笔记 公众号 论文: Gradient Centralization: A New Optimization Technique for Deep Neural Networks 论文地址:https://arxiv.org/abs/2004.01461 论文代码:https://github.com/Yongho…
代码: # -*- coding: utf-8 -*- """ Created on Thu Jul 12 09:36:49 2018 @author: zhen """ """ 分析n_neighbors的大小对K近邻算法预测精度和泛化能力的影响 """ from sklearn.datasets import load_breast_cancer from sklearn.model…
大家好,我是对白. 何恺明时隔两年发一作论文,提出了一种视觉自监督学习新范式-- 用掩蔽自编码器MAE,为视觉大模型开路. 这一次,北大博士生提出一个新方法CAE,在其下游任务中展现的泛化能力超过了MAE. 来看看这是一项什么样的研究? 这是一项什么研究? 自何恺明提出MAE以来,基于MIM,Masked Image Modeling,这一自监督学习表征算法就越来越引发关注. 它的主要思路,就是对输入图像进行分块和随机掩码操作,然后对掩码区域做预测. 预测的目标可以是Token ID(如微软提出…