使用pytorch完成kaggle猫狗图像识别】的更多相关文章

kaggle是一个为开发商和数据科学家提供举办机器学习竞赛.托管数据库.编写和分享代码的平台,在这上面有非常多的好项目.好资源可供机器学习.深度学习爱好者学习之用.碰巧最近入门了一门非常的深度学习框架:pytorch(如果你对pytorch不甚了解,请点击这里),所以今天我和大家一起用pytorch实现一个图像识别领域的入门项目:猫狗图像识别. 深度学习的基础就是数据,咱们先从数据谈起.此次使用的猫狗分类图像一共25000张,猫狗分别有12500张,我们先来简单的瞅瞅都是一些什么图片. 我们从下…
参考:https://blog.csdn.net/weixin_37813036/article/details/90718310 kaggle是一个为开发商和数据科学家提供举办机器学习竞赛.托管数据库.编写和分享代码的平台,在这上面有非常多的好项目.好资源可供机器学习.深度学习爱好者学习之用.碰巧最近入门了一门非常的深度学习框架:pytorch(如果你对pytorch不甚了解,请点击这里),所以今天我和大家一起用pytorch实现一个图像识别领域的入门项目:猫狗图像识别.深度学习的基础就是数据…
这里,我们介绍的是一个猫狗图像识别的一个任务.数据可以从kaggle网站上下载.其中包含了25000张毛和狗的图像(每个类别各12500张).在小样本中进行尝试 我们下面先尝试在一个小数据上进行训练,首先创建三个子集:每个类别各1000个样本的训练集.每个类别各500个样本的验证集和每个类别各500个样本的测试集. import os, shutil original_dataset_dir = '/media/erphm/DATA/kaggle猫狗识别/train'    # 原始文解压目录b…
1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变化后的图片大小,0, 0表示dx和dy, cv2.INTER_LINEAR表示插值的方式为线性插值 2.image.get_shape[1:4].num_elements() 获得最后三个维度的大小之和 参数说明:image表示输入的图片 3. saver.save(sess, path, glob…
去年研一的时候想做kaggle上的一道题目:猫狗分类,但是苦于对卷积神经网络一直没有很好的认识,现在把这篇文章的内容补上去.(部分代码参考网上的,我改变了卷积神经网络的网络结构,其实主要部分我加了一层1X1的卷积层,至于作用,我会在后文详细介绍) 题目地址:猫狗大战 同时数据集也可以在上面下载到. 既然是手把手,那么就要从前期的导入数据开始: 导入数据 #import sys, io #sys.stdout = io.TextIOWrapper(sys.stdout.buffer,encodin…
猫狗数据集的分为训练集25000张,在训练集中猫和狗的图像是混在一起的,pytorch读取数据集有两种方式,第一种方式是将不同类别的图片放于其对应的类文件夹中,另一种是实现读取数据集类,该类继承torch.utils.Dataset,并重写__getitem__和__len__. 先将猫和狗从训练集中区分开来,分别放到dog和cat文件夹下: import glob import shutil import os #数据集目录 path = "./ml/dogs-vs-cats/train&qu…
猫狗识别 数据集下载: 网盘链接:https://pan.baidu.com/s/1SlNAPf3NbgPyf93XluM7Fg 提取密码:hpn4 1. 要导入的包 import os import time import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from torch.utils i…
本次项目首先使用CNN卷积神经网络模型进行训练,最终训练效果不太理想,出现了过拟合的情况.准确率达到0.72,loss达到0.54.使用预训练的VGG模型后,在测试集上准确率达到0.91,取得了不错的改进效果. 数据集 本次项目使用The Asirra 数据集,Asirra(Animal Species Image Recognition for Restricting Access)是一套人机交互证明系统(Human Interactive Proof),它使用猫和狗的图片来验证网站访问者是真…
猫狗案例: 具体事务: 猫.狗 共性: 姓名.年龄.吃饭 分析:从具体到抽象 猫: 姓名.年龄--->成员变量 吃饭       ---> 成员方法 构造方法:无参.有参 狗: 姓名.年龄--->成员变量 吃饭       ---> 成员方法 构造方法:无参.有参 因为有共性的内容,所以就提取了一个父类,动物. 但是又由于吃饭的内容不一样,所以吃饭的方法是抽象的, 而方法是抽象,所以类也必须定义为抽象的. 实现: 从抽象到具体   动物类:   成员变量:姓名.年龄 成员方法:吃饭…
我们用猫狗案例来表明在java中使用多态的好处: class Animal{ public Animal(){} public void eat(){ System.out.println("吃饭"); } public void sleep(){ System.out.println("睡觉"); } } class Cat extends Animal{ public Cat(){} public void eat(){ System.out.println(&…
原数据集:包含 25000张猫狗图像,两个类别各有12500 新数据集:猫.狗 (照片大小不一样) 训练集:各1000个样本 验证集:各500个样本 测试集:各500个样本 1= 狗,0= 猫 # 将图像复制到训练.验证和测试的目录 import os,shutil orginal_dataset_dir = 'kaggle_original_data/train' base_dir = 'cats_and_dogs_small' os.mkdir(base_dir)#保存新数据集的目录 tra…
目录 1.预备工作 1.1 数据集准备 1.2 数据预处理 2.训练 2.1 模型 2.2 定义训练 2.3 训练 3.预测 4.参考文献 声明:这是我的个人学习笔记,大佬可以点评,指导,不喜勿喷.实现过程参考自夜雨飘零的博客以及实现代码.框架是百度开源的框架paddlepaddle. 1.预备工作 ​ 这是我上学期一直没有去填补的坑,之前想通过传统机器学习方法来实现,不过没做完.暑假难得回一次家,所以我想该把我没做完的坑填完吧. ​ 代码到现在为止已经写完了,不过还是存在坑的,比如哈士奇它会识…
python练习:寒冰猴子狐狸,猫狗咬架 一,寒冰猴子狐狸 class Person: def __init__(self, na, gen, age, fig): self.name = na self.gender = gen self.age = age self.fight =fig def grassland(self): """注释:草丛战斗,消耗200战斗力""" self.fight = self.fight - 200 def…
猫狗收容所 牛客网 程序员面试金典 C++ 题目描述 有家动物收容所只收留猫和狗,但有特殊的收养规则,收养人有两种收养方式,第一种为直接收养所有动物中最早进入收容所的,第二种为选择收养的动物类型(猫或狗),并收养该种动物中最早进入收容所的. 给定一个操作序列int[][2] ope(C++中为vector<vector>)代表所有事件.若第一个元素为1,则代表有动物进入收容所,第二个元素为动物的编号,正数代表狗,负数代表猫:若第一个元素为2,则代表有人收养动物,第二个元素若为0,则采取第一种收…
首先先导入所需要的库 import sys from matplotlib import pyplot from tensorflow.keras.utils import to_categorical from keras.models import Sequential from keras.layers import Conv2D from keras.layers import MaxPooling2D from keras.layers import Dense from keras.…
链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw 提取码:2xq4 百度网盘实在是恶心,找的别人的网盘下载不仅速度慢,还老挂掉,自己去kaggle下的,传到网盘上,下载慢留言我分享.…
之前在:https://www.cnblogs.com/xiximayou/p/12398285.html创建好了数据集,将它上传到谷歌colab 在colab上的目录如下: 在utils中的rdata.py定义了读取该数据集的代码: from torch.utils.data import DataLoader import torchvision import torchvision.transforms as transforms import torch #预处理 transform =…
贴一张自己画的思维导图  数据集准备 kaggle猫狗大战数据集(训练),微软的不需要FQ 12500张cat 12500张dog 生成图片路径和标签的List step1:获取D:/Study/Python/Projects/Cats_vs_Dogs/data/Cat下所有的猫图路径名,存放到cats中,同时贴上标签0,存放到label_cats中.狗图同理. train_dir = 'D:/Study/Python/Projects/Cats_vs_Dogs/data' def get_fi…
笔者这几天在跟着莫烦学习TensorFlow,正好到迁移学习(至于什么是迁移学习,看这篇),莫烦老师做的是预测猫和老虎尺寸大小的学习.作为一个有为的学生,笔者当然不能再预测猫啊狗啊的大小啦,正好之前正好有做过猫狗大战数据集的图像分类,做好的数据都还在,二话不说,开撸. 既然是VGG16模型,当然首先上模型代码了: def conv_layers_simple_api(net_in): with tf.name_scope('preprocess'): # Notice that we inclu…
题目 有家动物收容所只收留猫和狗,但有特殊的收养规则,收养人有两种收养方式,第一种为直接收养所有动物中最早进入收容所的,第二种为选择收养的动物类型(猫或狗),并收养该种动物中最早进入收容所的. 给定一个操作序列int[][2] ope(C++中为vector<vector>)代表所有事件.若第一个元素为1,则代表有动物进入收容所,第二个元素为动物的编号,整数代表狗,负数代表猫:若第一个元素为2,则代表有人收养动物,第二个元素若为0,则采取第一种收养方式,若为1,则指定收养狗,若为-1则指定收养…
100天搞定机器学习|1-38天 100天搞定机器学习|day39 Tensorflow Keras手写数字识别 前文我们用keras的Sequential 模型实现mnist手写数字识别,准确率0.9713.今天我们完成day40-42的课程,实现猫.狗的识别. 本文数据集下载地址 https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.…
数据集下载地址: 链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw提取码:2xq4 创建数据集:https://www.cnblogs.com/xiximayou/p/12398285.html 读取数据集:https://www.cnblogs.com/xiximayou/p/12422827.html 进行训练:https://www.cnblogs.com/xiximayou/p/12448300.html 保存模型并继续进行训练:htt…
keras 原理: keras系列︱图像多分类训练与利用bottleneck features进行微调(三)https://blog.csdn.net/sinat_26917383/article/details/72861152 基础篇:http://www.sohu.com/a/145534864_697750 Question1: 报错1:model.add(Convolution2D(32, 3, 3, input_shape=(3, 150, 150)))ValueError: Neg…
1.测试文件 [root@L shells]# cat catDog.txt snake snake pig bird dog cat snake pig bird snake cat bird dog bird tiger snake bird cat lion ji sdf 2.sed脚本文件 [root@L shells]# cat sed.txt /cat/,/dog/s/$/<---/ 3.测试效果 [root@L shells]# sed -f sed.txt < catDog.t…
数据集下载地址: 链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw提取码:2xq4 创建数据集:https://www.cnblogs.com/xiximayou/p/12398285.html 读取数据集:https://www.cnblogs.com/xiximayou/p/12422827.html 进行训练:https://www.cnblogs.com/xiximayou/p/12448300.html 保存模型并继续进行训练:htt…
数据集下载地址: 链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw提取码:2xq4 创建数据集:https://www.cnblogs.com/xiximayou/p/12398285.html 读取数据集:https://www.cnblogs.com/xiximayou/p/12422827.html 进行训练:https://www.cnblogs.com/xiximayou/p/12448300.html 保存模型并继续进行训练:htt…
矩池云是一个专业的国内深度学习云平台,拥有着良好的深度学习云端训练体验.在性价比上,我们以 2080Ti 单卡为例,36 小时折扣后的价格才 55 元,每小时单价仅 1.52 元,属于全网最低价.用户体验上,平台为用户提供了公开数据集.案例.预装环境.高速网盘等配套设施和数据,让用户可以专注于深度学习研究. 高性价比 矩池云拥有很高的性价比,其的计费方式主要分为按时租与按周/月租.按时租用采用的是分钟级的实时计费模式,满足了用完即走的短时需要:按周/月租会以一个优惠的价格出租,可以满足长期租用的…
这个博客是 Building powerful image classification models using very little data 的前期准备,用于把图片数据按照教程指示放到规定的文件夹中. python 文件处理主要用到 os 模块和 shutil 模块,'sh' 大概是 bash 的意思 os.chdir('path') 改变当前路径到 path os.listdir('path') 输出 path 路径下所有的文件名 os.makedirs('path/dirname')…
Windows 10 编译 Pycocotools 踩坑记 COCO数据库简介 微软发布的COCO数据库, 除了图片以外还提供物体检测, 分割(segmentation)和对图像的语义文本描述信息. COCO数据库的网址是: MS COCO API - http://mscoco.org/ Github网址 - https://github.com/pdollar/coco 关于API更多的细节在网站: http://mscoco.org/dataset/#download 数据库提供 Matl…
本文主要是使用[监督学习]实现一个图像分类器,目的是识别图片是猫还是狗. 从[数据预处理]到 [图片预测]实现一个完整的流程, 当然这个分类在 Kaggle 上已经有人用[迁移学习](VGG,Resnet)做过了,迁移学习我就不说了,我自己用 Keras + Tensorflow 完整的实现了一遍. 准备工作: 数据集:Dogs vs. Cats注册激活困难,自己想想办法,Ps:实在注册不了百度云有下载自己搜搜 使用编程语言:当然是Python 3,你问我为什么,当然是人生苦短. 使用机器学习库…