题目链接 loj#2015. 「SCOI2016」妖怪 题解 对于每一项展开 的到\(atk+\frac{dnf}{b}a + dnf + \frac{atk}{a} b\) 令$T = \frac{a}{b} $ 原式$=atk+Tdnf + dnf + \frac{atk}{T} $ 这就是那个单峰的对勾函数, 把单峰函数复合为求最值,发现也是个单峰函数(下凸壳) 三分就好了 或者维护一个最大值得下凸壳 代码 #include<cstdio> #include<algorithm&g…
传送门 首先可以把每个妖怪看成二维平面上的一个点,那么每一个环境\((a,b)\)就可以看成一条斜率\(k=-\frac{b}{a}\)的过该点的直线,战斗力就是这条直线在两坐标轴上的截距之和 对于每一个妖怪来说,它的战斗力为\(x+y-kx-\frac{y}{k}\),后面是个对勾函数,当\(k=-\sqrt{\frac{y}{x}}\)的时候函数取到最小值 那么我们维护一个右上凸壳,然后对于每一个点先用它和上一个点的直线更新答案,然后计算它的最优斜率,如果这个斜率的直线在凸包上刚好切到这一个…
题解 这道题教会我很多东西,虽然它是个傻逼三分 1.long double的运算常数是巨大的 2.三分之前的界要算对!一定要算准,不要想一个直接写上! 3.三分100次也就只能把精度往里推20多位,可你需要的精度是最大数值加小数位,大概是12位,而你三分的界最小也得卡到1e4和1e-4(虽然,用1e3和1e-3作为界也能过,我可不想考场上赌这个东西= =),精度爆炸--如何优化-- (其实atk和dnf小一点能更不卡精度吧= =) (这样的题根本连调都调不出来,就算我界算对了也得被三分次数卡死=…
「SCOI2016」妖怪 玄妙...盲猜一个结论,然后过了,事后一证,然后假了,数据真水 首先要最小化 \[ \max_{i=1}^n (1+k)x_i+(1+\frac{1}{k})y_i \] \(k\)是大于0的正实数 最大值显然在上凸包上,先把上凸包搞出来 然后每个点成为最大值时,\(k\)都有个取值范围(就是它左边或者右边的点成为最大值时) 然后对每个点用均值不等式得到最小值为 \[ \begin{aligned} z&=kx+\frac{1}{k}y+x+y\\ &\ge2\s…
题目链接 loj#2013. 「SCOI2016」幸运数字 题解 和树上路径有管...点分治吧 把询问挂到点上 求出重心后,求出重心到每个点路径上的数的线性基 对于重心为lca的合并寻味,否则标记下传 对于每个询问,只需要暴力合并两个线性基即可 每个点只会被加到logn个线性基里,所以总复杂度为O(nlogn60 + q60*2) 然后我写了句memset(b,0,sizeof 0)...被卡了1h... 代码 #include<cstdio> #include<vector> #…
题目链接 loj#2016. 「SCOI2016」美味 题解 对于不带x的怎么做....可持久化trie树 对于带x,和trie树一样贪心 对于答案的二进制位,从高往低位贪心, 二进制可以表示所有的数,那么每一位的选取情况,对于之后的可选区间也是一定的 贪心时,判断当前位,是否可以为1, 用线段树维护一下,每次走左儿子代表这一位选了1,走又儿子为选了0,这样区间是不交 对于b的限制,改一下查询的区间就行了 代码 #include<cstdio> #include<algorithm>…
题目链接 loj#2012. 「SCOI2016」背单词 题解 题面描述有点不清楚. 考虑贪心 type1的花费一定不会是优的,不考虑, 所以先把后缀填进去,对于反串建trie树, 先填父亲再填儿子,这样每个单词的后缀填完了才会被填. 不是单词结束点的点是没用的,去掉 根据直觉,填单词和dfs序有关,所以应该先填Size小的 根据贪心,先填Size小的儿子.因为将Size小的先填可以减少后面儿子的代价 而先填大的会增加代价. 代码 #include<queue> #include<cst…
#2013. 「SCOI2016」幸运数字 题目描述 A 国共有 n nn 座城市,这些城市由 n−1 n - 1n−1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征.一些旅行者希望游览 A 国.旅行者计划乘飞机降落在 x xx 号城市,沿着 x xx 号城市到 y yy 号城市之间那条唯一的路径游览,最终从 y yy 城市起飞离开 A 国. 在经过每一座城市时,游览者就会有机会与这座城市的幸运数字拍照,从而将这…
时限为什么这么大啊 明摆着放多$ log$的做法过啊$QAQ$ LOJ #2013 题意 有$ Q$次询问,每次询问树上一条链,点有点权,你需要选择一些链上的点使得异或和尽量大 点数$ \leq 2*10^4$ 询问数$ \leq 2*10^5$ 值域不超过$ 2^{64}$ $ Solution$ 直接点分 把询问用$ vector$挂在当前点分中心上 计算一个点的时候 递归计算它统率的子树,在每个点挂上从自己到根的线性基, 每次相当于继承父亲的线性基并插入一个数 然后将询问分成两类 不过当前…
题面 点此看题 题意很明白,就不转述了吧. 题解 题目相当于告诉了我们若干等量关系,每个限制 l 1 , r 1 , l 2 , r 2 \tt l_1,r_1,l_2,r_2 l1​,r1​,l2​,r2​ 相当于 S l 1 = S l 2 , S l 1 + 1 = S l 2 + 1 , - , S r 1 = S r 2 \tt S_{l_1}=S_{l_2},S_{l_1+1}=S_{l_2+1},\dots,S_{r_1}=S_{r_2} Sl1​​=Sl2​​,Sl1​+1​=S…