NOI2016模拟赛Zbox loves stack】的更多相关文章

#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; #define PI pair<int,int> #define fi first #define se second #define mp(a,b) make_pair(a,b) #define maxn…
题目描述 给你一个长为n的排列,m次询问,每次查询一个区间的逆序对数,强制在线. 题解 MD不卡了..TMD一点都卡不动. 强制在线的话也没啥好一点的方法,只能分块预处理了. 对于每个块,我们设lef[i]表示i到这个i这个元素所在块的块头的区间逆序对,rig[i]表示到块尾的逆序对. 在设一个cnt[i][j]表示从第i个块到第j个块的逆序对. 然后考虑如何处理询问. 整块之间的可以直接O(1)取答案,对于散块,我们需要求出散块内部的答案,散块对整块的答案,散块对散块的答案. 对于散块内的,因…
题目大意: 给你一个长为n的序列a,m次询问,每次查询一个区间的众数的出现次数,强制在线. 解题思路: 出题人题解 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 首先得离散化. 分块后,预处理Fi,j表示第i∼j块的众数的出现次数.此处要用一个桶,空间复杂度O(n),时间复杂度O(n√n). 用vector按顺序存每个数值所有元素的出现位置. 再记录每个元素在相应vector里的下标p. 以上空间复杂度都是O(n)的. 考虑询问,中间的直接使用预处理出的Fi,j的值即可.设当前的答案ans=F…
二次离线莫队. 终于懂了 \(lxl\) 大爷发明的二次离线莫队,\(\%\%\%lxl\) 二次离线莫队,顾名思义就是将莫队离线两次.那怎么离线两次呢? 每当我们将 \([l,r]\) 移动右端点到 \(a_{r+1}\) 的时候,发现贡献为 \([1,r]-[1,l-1]\) 对 \(a_{r+1}\). \([1,r]\) 对 \(a_{r+1}\) 的贡献可以 \(O(n\log n)\) 预处理出来,那么我们只需要处理 \([1,l-1]\) 对 \(a_{r+1}\) 的贡献. 那么…
题意 长为 \(n\) 的序列,询问区间众数,强制在线. \(n\leq 5\times 10^5\). 分析 考虑分块,暴力统计出整块到整块之间的众数次数. 然后答案还可能出现在两边的两个独立的块中,开 \(vector\) 记录每种数字出现的位置集合,然后暴力判断两边两个块中的元素出现的次数.发现并不需要知道具体在 \([l,r]\) 内出现了多少次,而只需要知道 \([l,r]\) 中是否有 \(ans+1\)个该种颜色. 总时间复杂度为 \(O(n\sqrt n)\). 代码 #incl…
题目描述 LYK喜欢兔子,它在家中养了3只兔子. 有一天,兔子不堪寂寞玩起了游戏,3只兔子排成一排,分别站在a,b,c这3个位置. 游戏的规则是这样的,重复以下步骤k次:选择两个不同的兔子A和B,假如它们位于X与Y,A可以从X跳到Y+Y-X处,但是跳跃时是不允许一下子跳过两只兔子的,也就是说第三只兔子不在[min{X,Y+Y-X},max{X,Y+Y-X}]处. 现在3只小兔子的位置分别到了x,y,z(3只兔子长得一样,即三只兔子跳完之后的顺序可以变化)处,但是它们忘记一开始是怎么跳的了,想让你…
题目描述 LYK喜欢花花绿绿的图片,有一天它得到了一张彩色图片,这张图片可以看做是一张n*m的网格图,每个格子都有一种颜色去染着,我们用-1至n*m-1来表示一个格子的颜色.特别地,-1代表这个颜色是黑色,LYK不喜欢黑色! LYK想将剪下这张图片中的一张子图片来(四联通块),使得这个子图片不存在黑色的格子,并且至少有k个不同的颜色. 但是每个格子有自己的脾气,特别的,第i行第j列这个格子如果被LYK选中了,LYK需要花费相应的代价.LYK想花费尽可能少的代价来剪下一张满足自己要求的图片. 输入…
题目描述 LYK喜欢字符串,它认为一个长度为n的字符串一定会有n*(n+1)/2个子串,但是这些子串是不一定全部都不同的,也就是说,不相同的子串可能没有那么多个.LYK认为,两个字符串不同当且仅当它们的长度不同或者某一位上的字符不同.LYK想知道,在字符集大小为k的情况下,有多少种长度为n的字符串,且该字符串共有m个不相同的子串. 由于答案可能很大,你只需输出答案对1e9+7取模后的结果即可. 输入格式(string.in) 一行3个数n,m,k. 输出格式(string.out) 一行,表示方…
题目链接 洛谷. Solution 思路同[BZOJ2724] [Violet 6]蒲公英,只不过由于lxl过于毒瘤,我们有一些更巧妙的操作. 首先还是预处理\(f[l][r]\)表示\(l\sim r\)块的众数数量,注意这里不要求具体是什么,我们就有一些奇技淫巧了. 当然第一步还是离散化,对于权值为\(v\)的点,我们开一个\(vector\)来从小到大存这个权值在哪里出现过,在记个\(pos[i]\)表示\(i\)在$vector $内的下标是什么. 那么预处理\(f[l][r]\)的时候…
题目大意:有$n(n\leqslant5\times10^5)$个数,$m(m\leqslant5\times10^5)$个询问,每个询问问区间$[l,r]$中众数的出现次数 题解:分块,设块大小为$S$,先可以预处理出两两块之间的众数出现次数,复杂度$O(\Big(\dfrac n S\Big)n)$.询问时先把答案设成整块内的答案,然后对两边剩下的最多$2S$个元素进行讨论. 难点在如何快速求出一个元素在区间内出现次数,先想到的是主席树,但是多了一个$\log_2$,并过不去.可以把每种数出…