题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5126 思路:支持离线,那么我们可以用两次CDQ分治使四维降为二维,降成二维后排个序用树状数组维护下就好了 实现代码: #include<bits/stdc++.h> using namespace std; const int inf = 0x3f3f3f3f; ; int ans[M],c[M]; struct node { int x,y,z; int kind,id; node(){} no…
题目大意:略 题目传送门 四维偏序板子题 把插入操作和询问操作抽象成$(x,y,z,t)$这样的四元组 询问操作拆分成八个询问容斥 此外$x,y,z$可能很大,需要离散 直接处理四维偏序很困难,考虑降维 而$t$这一维有一个神奇的性质,任意两个四元组的$t$互不相同,是最好处理的,所以尽量保证$t$这一维也出现在降维之后的$cdq$分治里 外层把所有四元组按$x$排序,回溯按$t$排序 现在要处理左区间对右区间的影响了,把左区间里的所有四元组打上$0$标记,右区间里的所有四元组打上$1$标记 只…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5458 Problem Description Given an undirected connected graph G with n nodes and m edges, with possibly repeated edges and/or loops. The stability of connectedness between node u and node v is defined by…
题意:给n个点,求每一个点的满足 x y z 都小于等于它的其他点的个数. 析:三维的,第一维直接排序就好按下标来,第二维按值来,第三维用数状数组维即可. 代码如下: cdq 分治: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #…
题意 给定一棵 \(n\) 个节点的树,每个节点有点权.完成 \(q\) 个操作--操作分两种:修改点 \(x\) 的点权.查询与 \(x\) 距离小于等于 \(d\) 的权值总和. \(1 \leq n,q \leq 10^5\) 思路 从最简单的情况分析--只有一次查询.当然一遍 \(O(n)\) 的 \(\text{dfs}\) 可以直接写,不过要用点分治写的话,\(\text{solve}\) 函数直接容斥一下就可以了. 如果多个询问呢?其实在回答关于点 \(x\) 的询问时,其实只需要…
Jam's problem again Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 640    Accepted Submission(s): 210 Problem Description Jam like to solve the problem which on the 3D-axis,given N(1≤N≤100000)…
Pinball Game 3D Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1137    Accepted Submission(s): 477 Problem Description RD is a smart boy and excel in pinball game. However, playing common 2D…
经典问题:二维偏序.给定平面中的n个点,求每个点左下方的点的个数. 因为 所有点已经以y为第一关键字,x为第二关键字排好序,所以我们按读入顺序处理,仅仅需要计算x坐标小于<=某个点的点有多少个就行. 这就是所说的:n维偏序,一维排序,二维树状数组,三维 分治 Or 树状数组套平衡树…… <法一>树状数组. #include<cstdio> #include<algorithm> #include<iostream> using namespace st…
Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 2142  Solved: 874[Submit][Status][Discuss] Description 你有一个N*N的棋盘,每个格子内有一个整数,初始时的时候全部为0,现在需要维护两种操作: 命令 参数限制 内容 1 x y A 1<=x,y<=N,A是正整数 将格子x,y里的数字加上A 2 x1 y1 x2 y2 1<=x1<= x2<=N 1<=y1<= y…
传送门 https://www.luogu.org/problemnew/show/P4479 题目描述 在平面直角坐标系上,有 n 个不同的点.任意两个不同的点确定了一条直线.请求出所有斜率存在的直线按斜率从大到小排序后,第 k 条直线的斜率为多少. 为了避免精度误差,请输出斜率向下取整后的结果.(例如: ⌊1.5⌋ = 1 , ⌊−1.5⌋ = −2 ) 分析 一开始打了一个暴力,10分后来改着改着成了30分,浮点误差. 正解其实很简单,我们首先逆向思考一下,如果我们假设已经有了斜率k. 如…
http://acm.hdu.edu.cn/showproblem.php?pid=4267 [思路] 树状数组的区间修改:在区间[a, b]内更新+x就在a的位置+x. 然后在b+1的位置-x 树状数组的单点查询:求某点a的值就是求数组中1~a的和. (i-a)%k==0把区间分隔开了,不能直接套用树状数组的区间修改单点查询 这道题的K很小,所以可以枚举k,对于每个k,建立k个树状数组,所以一共建立55棵树 所以就可以多建几棵树..然后就可以转换为成段更新了~~ [AC] #include<b…
题目链接 给n个操作, 第一种是在x, y, z这个点+1. 第二种询问(x1, y1, z1). (x2, y2, z2)之间的总值. 用一次cdq分治可以将三维变两维, 两次的话就变成一维了, 然后最后一维用树状数组维护. 对于每个询问, 相当于将它拆成8个点. 注意第二次cdq分治的时候l可能小于r. 所以这里的return条件是l <= r而不是l == r. 找了好久... #include <bits/stdc++.h> using namespace std; #defin…
题目链接 题目大意:一共有Q(1<=Q<=50000)组操作,操作分为两种: 1.在x,y,z处添加一颗星星 2.询问以(x1,y1,z1)与(x2,y2,z2)为左上和右下顶点的矩形之间的星星数 所有坐标取值范围均为[1,1e9] 思路:由于坐标取值范围太大(即使离散化后也很大),3维的数组肯定开不下,所以只能另辟蹊径. 解法一(两重CDQ+树状数组,需将z坐标离散化): 1)将每个查询操作拆分为8个(容斥),将所有操作放入一个数组qr中 2)将所有操作按时间排序(其实不用,因为读入的顺序就…
题目链接:[http://acm.split.hdu.edu.cn/showproblem.php?pid=5517] 题意:定义multi_set A<a , d>,B<c , d , e>,C<x , y , z>,给出 A , B ,定义 C = A * B = ={⟨a,c,d⟩∣⟨a,b⟩∈A, ⟨c,d,e⟩∈B and b=e} .求出C之后,求C中一个元素t[i]<a , b , c>是否存在一个元素tmp<x , y , z>使…
BUPT2017 wintertraining(15) #5A HDU 4456 题意 给你一个n行n列的格子,一开始每个格子值都是0.有M个操作,p=1为第一种操作,给格子(x,y)增加z.p=2为询问与格子(x,y)的曼哈顿距离不超过z的格子值的和. (1 ≤ n ≤10 000, 1 ≤ m ≤ 80 000)  题解 这道题如果数据不大,那就可以直接用二维的树状数组来做. 方法1:二维树状数组 因为数据比较大,所以要离线处理并且离散化一下修改的值,再用二维树状数组: 查询的是菱形,我们把…
传送门 CJOJ Solution 考虑这是一个四维偏序对吧. 直接cdq套在一起,然后这题有两种实现方法(树状数组的更快!) 代码实现1(cdq+cdq+cdq) /* mail: mleautomaton@foxmail.com author: MLEAutoMaton This Code is made by MLEAutoMaton */ #include<stdio.h> #include<stdlib.h> #include<string.h> #inclu…
题目链接 题目就是赤裸裸的三维偏序,所以用CDQ+树状数组可以比较轻松的解决,但是还是树套树好想QAQ CDQ+树状数组 #include<bits/stdc++.h> using namespace std; typedef long long ll; typedef unsigned long long ull; + ; struct node { int a, b, c, num, val; }q[maxn], w[maxn]; bool cmp(node x, node y) { re…
题意:给一个数组,每次查询输出区间内不重复数字的和. 这是3xian教主的题. 用前缀和的思想可以轻易求得区间的和,但是对于重复数字这点很难处理.在线很难下手,考虑离线处理. 将所有查询区间从右端点由小到大排序,遍历数组中的每个数字,每次将该数字上次出现位置的值在树状数组中改为0,再记录当前位置,在树状数组中修改为当前的数值.这样可以保证在接下来的查询中该数字只出现了一次.这是贪心的思想,只保留最可能被以后区间查询的位置.如果当前位置是某个查询区间的右端点,这时候就可以查询了.最后再根据查询区间…
题意:Q次操作,三维空间内 每个星星对应一个坐标,查询以(x1,y1,z1) (x2,y2,z2)为左下顶点 .右上顶点的立方体内的星星的个数. 注意Q的范围为50000,显然离散化之后用三维BIT会MLE. 我们可以用一次CDQ把三维变成二维,变成二维之后就有很多做法了,树套树,不会树套树的话还可以继续CDQ由二维变成一维,,变成一维了就好做了,,最基本的数据结构题目了.. 不得不说.CDQ真的很神奇. 下面做法就是CDQ套CDQ套树状数组. #include <cstdio> #inclu…
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3295 思路: 可以将这道题看成倒着插入,这样就可以转化成求逆序对数,用CDQ分治降维,正反用树状数组求两遍逆序对就好了. 这道题还可以用在线的树套树或者可持久化线段树来写.. 实现代码: #include<bits/stdc++.h> using namespace std; #define ll long long ; struct node{ int t,x,y; int kind,…
Description P 工厂是一个生产纸箱的工厂.纸箱生产线在人工输入三个参数 n p a , 之后,即可自动化生产三边边长为 (a mod P,a^2 mod p,a^3 mod P) (a^4 mod p,a^5 mod p,a^6 mod P) .... (a^(3n-2) mod p,a^(3n-1) mod p,a^(3n) mod p) 的n个纸箱.在运输这些纸箱时,为了节约空间,必须将它们嵌套堆叠起来.一个纸箱可以嵌套堆叠进另一个纸箱当且仅当它的最短边.次短边和最长边 长度分别…
版权声明:本文为博主原创文章,未经博主允许不得转载. hdu 4605 题意: 有一颗树,根节点为1,每一个节点要么有两个子节点,要么没有,每个节点都有一个权值wi .然后,有一个球,附带值x . 球到达某个节点上,如果x==wi,那么球停在这个节点上 .当然,这个点是叶子节点也会停止 . 如果x<wi,那么有1/2的概率走向左子树,有1/2的概率走向右子树 . 如果x>wi,那么有1/8的概率走向左子树,有7/8的概率走向右子树 . 问球经过v节点的概率 .(停在v节点也算) 解法: 在线的…
emmmm我能怎么说呢 CDQ分治显然我没法写一篇完整的优秀的博客,因为我自己还不是很明白... 因为这玩意的思想实在是太短了: fateice如是说道: 如果说对于一道题目的离线操作,假设有n个操作 把n个操作分成两半,可以想到的是,假如说提出上面那半的修改操作,下面那半提出询问操作 那么这些修改操作对下面的询问操作显然是都产生了相同的影响的. 然后对于每一半的操作都这样递归下去,然后就有了CDQ分治处理问题的基本方法 (图片来自fateice大爷的怕怕踢) 但是再往深处说我也不知道该怎么说,…
xiaoxin and his watermelon candy 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5654 Description During his six grade summer vacation, xiaoxin got lots of watermelon candies from his leader when he did his internship at Tencent. Each watermelon cand…
题目大意: 洛谷传送门 这明明是一道KD-Tree,CDQ分治是TLE的做法 化简式子,$|x1-x2|-|y1-y2|=(x1+y1)-(x2+y2)$ 而$CDQ$分治只能解决$x1 \leq x2,y1 \leq y2$的情况 把每次插入操作都相当于一个三元组$<x,y,t>$,权值是$x+y$.这就是一个三维偏序问题,用树状数组维护最大值即可 所以通过坐标变换,跑$4$次$CDQ$就行了? 没错,你会像我一样T得飞起 #include <cstdio> #include &…
题目大意: 洛谷传送门 三维偏序裸题.. 每次操作都看成一个三元组$<x,y,t>$,表示$x,y$坐标和操作时间$t $ 询问操作拆成$4$个容斥 接下来就是$CDQ$了,外层按t排序,回溯时按$x$排序,用树状数组处理$y$这一维即可 #include <vector> #include <cstdio> #include <cstring> #include <algorithm> #define N1 201000 #define M1…
题目大意:略 洛谷传送门 和 [CQOI2015]动态逆序对 这道题一样的思路 一开始的序列视为$n$次插入操作 把每次交换操作看成四次操作,删除$x$,删除$y$,加入$x$,加入$y$ 把每次操作都看成一个三元组 $<x,w,t>$ 操作位置,权值,以及操作时间 变成了一道三维偏序裸题 外层按操作时间$t$升序,回溯时按操作位置$x$排序 处理左区间对右区间的影响时,正反两次树状数组求逆序对即可 #include <vector> #include <cstdio>…
题目大意: 题面传送门 还是一道三维偏序题 每次操作都可以看成这样一个三元组 $<x,w,t>$ ,操作的位置,权值,修改时间 一开始的序列看成n次插入操作 我们先求出不删除时的逆序对总数量,再统计每次删除元素时,减少的逆序对数量 然后就是三维偏序裸题了吧,第一维时间,第二维操作位置,第三维权值,用树状数组维护即可 由于逆序对可以在被删除元素的前面或者后面,所以在归并时需要正反遍历各统计一次 #include <vector> #include <cstdio> #in…
题目大意: 题面传送门 三维偏序裸题 首先,把三元组关于$a_{i}$排序 然后开始$CDQ$分治,回溯后按$b_{i}$排序 现在要处理左侧对右侧的影响了,显然现在左侧三元组的$a_{i}$都小于等于右侧 而$c_{i}$这一维需要用权值树状数组维护 归并排序时,已知左侧右侧两个指针分别是$i,j$ 如果$b_{i} \leq bj$,将左侧已经遍历过的三元组的$c_{i}$推入树状数组,然后$i++$ 如果$b_{i}>bj$,那么右侧能取到的贡献就是树状数组内$\leq c_{j}$的三元…
P1972 [SDOI2009]HH的项链 题目背景 无 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH 不断地收集新的贝壳,因此,他的项链变得越来越长.有一天,他突然提出了一个问题:某一段贝壳中,包含了多少种不同的贝壳?这个问题很难回答……因为项链实在是太长了.于是,他只好求助睿智的你,来解决这个问题. 输入格式 第一行:一个整数N,表示项链的长度. 第二行:N 个整数,表示依次表示项链中贝…