非常神仙的状压DP+容斥原理. 首先,给出一个状压方程:$f_S$表示点集为$S$的情况下,整个点集构成强连通图的方案数. 这个DP方程还是比较容易想到的,但是没有办法正常转移,考虑通过容斥原理进行转移. 对于一个点集,它无法构成强连通分量的方案,就是我们选择一个出度为$0$的强连通分量,这个强连通分量并不包含整体的方案,就是无法构成的方案数,也就是缩点后的图是一个至少两个节点的DAG. 那么,我们可以钦定一个点集$j,j\subset S$作为出度为$0$的强连通分量,那么可以得到,这样其他的…