import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skimage import color,data,transform,io #获取所有数据文件夹名称fileList = os.listdir("F:\\data\\flowers")trainDataList = []trianLabel = []testDataList = []testLa…
import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skimage import color,data,transform,io #获取所有数据文件夹名称fileList = os.listdir("F:\\data\\flowers")trainDataList = []trianLabel = []testDataList = []testLa…
# coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # In[34]: import tensorflow as tfimport numpy as np train10_images = np.load('train10_images.npy')train10_labels = np.load('train10_labels.npy') y=tf.pl…
import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,io labelList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Training")allFruitsImageName = []for i in range(10): allFruitsImageName.append(…
#-*- coding:utf-8 -*-### required libaraiedimport osimport matplotlib.image as imgimport matplotlib.pyplot as pltimport skimagefrom skimage import color, data, transformfrom scipy import ndimageimport numpy as npimport tensorflow as tffrom IPython.co…
import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflefrom keras.utils import np_utilsfrom skimage import color, data, transform, io trainDataDirList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\t…
import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,io labelList = os.listdir("F:\\MachineLearn\\ML-xiaoxueqi\\fruits\\Training")allFruitsImageName = []for i in range(len(labelList)): allFruitsImage…
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, color_ordering=0): ''' 随机调整图片的色彩,定义两种处理顺序. ''' if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32./255.) image = tf.image.…
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platform import gfile import tensorflow.contrib.slim as slim # 加载通过TensorFlow-Slim定义好的inception_v3模型. import tensorflow.contrib.slim.python.slim.nets.incepti…
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 使用'r'会出错,无法解码,只能以2进制形式读取 # img_raw = tf.gfile.FastGFile('E:\\myresource\\moutance.jpg','rb').read() img_raw = open('E:\\myresource\\moutance.jpg','rb').read() # 把二进制文件解码为uin…
import kerasimport matplotlib.pyplot as pltfrom keras.models import Sequentialfrom keras.layers import Dense,Activation,Flatten,Dropout,Convolution2D,MaxPooling2Dfrom keras.utils import np_utilsfrom keras.optimizers import RMSpropfrom skimage import…
#-*- coding:utf- -*- import time import keras import skimage import numpy as np import tensorflow as tf import matplotlib.image as img from scipy import ndimage from skimage import color, data, transform %matplotlib inline #设置文件目录 Training = r'F:\\da…
import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 OUTPUT_NODE = 10 LAYER1_NODE = 500 def get_weight_variable(shape, regularizer): weights = tf.get_variable("weights", shape, initializer…
import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE_SIZE = 28 NUM_CHANNELS = 1 NUM_LABELS = 10 # 第一层卷积层的尺寸和深度 CONV1_DEEP = 32 CONV1_SIZE = 5 # 第二层卷积层的尺寸和深度 CONV2_DEEP = 64 CONV2_SIZE = 5 # 全连接层的节点个数 FC…
import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platform import gfile # 原始输入数据的目录,这个目录下有5个子目录,每个子目录底下保存这属于该 # 类别的所有图片. INPUT_DATA = 'F:\\TensorFlowGoogle\\201806-github\\datasets\\flower_photos'…
import tensorflow as tf # 输入数据 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("E:\\MNIST_data", one_hot=True) # 定义网络的超参数 learning_rate = 0.001 training_iters = 200000 batch_size = 128 display_step =…
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data #设置输入参数 batch_size = 128 test_size = 256 # 初始化权值与定义网络结构,建构一个3个卷积层和3个池化层,一个全连接层和一个输出层的卷积神经网络 # 首先定义初始化权重函数 def init_weights(shape): return tf.Variabl…
import tempfile import tensorflow as tf train_files = tf.train.match_filenames_once("E:\\output.tfrecords") test_files = tf.train.match_filenames_once("E:\\output_test.tfrecords") # 解析一个TFRecord的方法. def parser(record): features = tf.pa…
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platform import gfile # 原始输入数据的目录,这个目录下有5个子目录,每个子目录底下保存这属于该 # 类别的所有图片. INPUT_DATA = 'F:\\TensorFlowGoogle\\201806-github\\datasets\\flower_photos\\' # 输出文件地址…
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platform import gfile # 原始输入数据的目录,这个目录下有5个子目录,每个子目录底下保存这属于该 # 类别的所有图片. INPUT_DATA = 'F:\\TensorFlowGoogle\\201806-github\\datasets\\flower_photos\\' # 输出文件地址…
# 导入模块 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 加载数据 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True) #模型训练 # 设置超参数 learning_rate =…
#加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True) #设置训练的超参数,学习率 训练迭代最大次数,输入数据的个数 learning_rate= 0…
#训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #设置超参数 max_step=1000 learning_rate=0.001 dropout=0.9 # 用logdir明确标明日志文件储存路径 #训练过程中的数据储存在E:\\MNIST_data\\目录中,通过这个路径指定--log_dir data…
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function = None): #构建权重: in_sizeXout_size大小的矩阵 weights = tf.Variable(tf.random_normal([in_size, out_size]))#生成随机数 #构建偏置: 1X…
import tensorflow as tf files = tf.train.match_filenames_once("E:\\MNIST_data\\output.tfrecords") filename_queue = tf.train.string_input_producer(files, shuffle=False) # 读取文件. reader = tf.TFRecordReader() _,serialized_example = reader.read(filen…
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, color_ordering=0): if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32./255.) image = tf.image.random_saturation(image, low…
# -*- coding: utf-8 -*- import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platform import gfile import tensorflow.contrib.slim as slim import tensorflow.contrib.slim.python.slim.nets.inception_v3 as inceptio…
import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platform import gfile import tensorflow.contrib.slim as slim # 因为slim.nets包在 tensorflow 1.3 中有一些问题,所以这里为了方便 # 我们将slim.nets.inception_v3中的代码拷贝到了同一个文件夹下. # imp…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点 OUTPUT_NODE = 10 # 输出节点 LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.9…
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点 OUTPUT_NODE = 10 # 输出节点 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数 LEARNING_RATE_BASE = 0.01 LEARNING_RATE_DECAY = 0.99 REGULARAZTION_RATE = 0…