参考:刘汝佳<算法竞赛入门经典训练指南> 感觉是非常远古的东西了,几乎从来没有看到过需要用这个的题,还是学一发以防翻车. 置换:排列的一一映射.置换乘法相当于函数复合.满足结合律,不满足交换律. 置换的循环分解:即将置换看成一张有向图,分解成若干循环.循环的数量称为循环节. 以置换集合来描述等价关系.如果存在一个置换将一个方案映射到另一个方案,则这两个方案等价.置换集合应当构成置换群. 不动点:方案s经过置换f不变,则s为f的不动点. Burnside引理:等价类数量=所有置换的不动点数量的平…
两种置换 旋转:有n种,分别是旋转1个2个--n个,旋转i的循环节数位gcd(i,n) 翻转:分奇偶,对于奇数个,只有一个珠子对一条边的中点,循环节数为n/2+1:对于偶数个,有珠子对珠子和边对边,循环节个数为n/2+1个和n/2个 然后用polya定理即可 #include<iostream> #include<cstdio> using namespace std; long long n,k,ans; long long ksm(long long a,long long b…
和poj 2409差不多,就是k变成3了,详见 还有不一样的地方是记得特判n==0的情况不然会RE #include<iostream> #include<cstdio> using namespace std; long long n,ans; long long ksm(long long a,long long b) { long long r=1; while(b) { if(b&1) r=r*a; a=a*a; b>>=1; } return r; }…
别问我为啥突然刷了道OI题,也别问我为啥花括号不换行了... 题目描述 求含 $n$ 个碳原子的本质不同的烷基数目模 $998244353$ 的结果.$1\le n\le 10^5$ . 题解 Burnside引理+多项式牛顿迭代 不考虑同构的话,很容易想到dp方程 $\begin{cases}f_0=1\\f_i=\sum\limits_{j+k+l+1=i}f_jf_kf_l\end{cases}$ . 考虑同构,可以通过容斥原理,大力讨论一下容斥系数.一个更简单的方法是考虑Burnside…
如果不谈证明,稍微有点线代基础的人都可以在两分钟内学完所有相关内容.. 行列式随便找本线代书看一下基本性质就好了. 学习资源: https://www.cnblogs.com/candy99/p/6420935.html http://blog.csdn.net/Marco_L_T/article/details/72888138 首先是行列式对几个性质(基本上都是用数学归纳法证): 1.交换两行(列),行列式取相反数 2.由1.得若存在两行(列)完全相同则行列式为0 3.上(下)三角行列式即主…
设正整数$m_1, m_2, ... , m_r$两两互素,对于同余方程组 $x ≡ a_1 \ (mod \ m_1)$ $x ≡ a_2 \ (mod \ m_2)$ $...$ $x ≡ a_r \ (mod \ m_r)$ 有整数解.设$P = \prod\limits_{k = 1}^{r} m_k$,则有 $$x ≡ a_1 M_1 M_1^{-1} + a_2 M_2 M_2^{-1} + ... + a_r M_r M_r^{-1}\ ( \ mod \ P)$$ 其中,$M_i…
题目描述 用 $c$ 种颜色去染 $r$ 个点的环,如果两个环在旋转或翻转后是相同的,则称这两个环是同构的.求不同构的环的个数. $r·c\le 32$ . 题解 Polya定理 Burnside引理:一个置换群的等价类数目等于这个置换群中所有置换的不动点数目的平均值:Polya定理:设有限群G有 $m$ 个置换,第 $i$ 个置换有 $a_i$ 个循环,现在要将所有的点染成 $c$ 种颜色,那么染色后群G的等价类数目为:$L=\frac{c^{a_1}+c^{a_2}+…+c^{a_m}}m$…
目录 @0 - 参考资料@ @1 - 问题引入@ @2 - burnside引理@ @3 - pólya定理@ @4 - pólya定理的生成函数形式@ @0 - 参考资料@ 博客1 @1 - 问题引入@ 一个经典问题: 一正方形分成4格,2着色,有多少种方案? 其中,经过转动相同的图象算同一方案. 假如不考虑转动,各种方案如下所示. 首先可以发现,转动的角度只有 4 种:0°,90°,180°,270°. 然后可以得到,每一次转动可以将一个方案唯一映射成另一个方案(可以是自身). 于是我们可以…
Scala与Java具有很多相似之处,但又有很多不同.这里主要从一个Java开发者的角度,总结在使用Scala的过程中所面临的一些思维转变. 这里仅仅是总结了部分两种语言在开发过程中的不同,以后会陆续更新一些切换后在开发过程中值得注意的地方.以下列举了部分,但令人印象深刻的Scala语言的不同之处,具体的代码演示样例及具体阐述见下文.  Scala中可直接调用Java代码,与Java无缝连接. 语句能够不用";"结束.且推荐不适用";". 变量声明时以var或va…
提示: 本文并非严谨的数学分析,有很多地方是自己瞎口胡的,仅供参考.有错误请不吝指出 :p 1. 群 1.1 群的概念 群 \((S,\circ)\) 是一个元素集合 \(S\) 和一种二元运算 $ \circ $ 的合称,其满足以下性质. 封闭性 对于 \(\forall a,b \in S\) , \(\exist c \in S\) 使得 \(c = a \circ b\) 结合律 对于 \(\forall a,b,c \in S\) , \(a \circ (b \circ c) = (…