flink的watermark机制你学会了吗?】的更多相关文章

大家好,今天我们来聊一聊flink的Watermark机制. 这也是flink系列的的第一篇文章,如果对flink.大数据感兴趣的小伙伴,记得点个关注呀. 背景 ​ flink作为先进的流水计算引擎,提供了三种时间概念,这对基于时间的流处理应用提供了多种可能. Event time 指生产设备中每个独立的事件发生的时间,比如用户点击产生的时间. Process time 指正在执行相关进程的机器的系统时间. IngestionTime 指事件进入flink的时间. WaterMark机制主要是用…
[白话解析] Flink的Watermark机制 0x00 摘要 对于Flink来说,Watermark是个很难绕过去的概念.本文将从整体的思路上来说,运用感性直觉的思考来帮大家梳理Watermark概念. 0x01 问题 关于Watermark,很容易产生几个问题 Flink 流处理应用中,常见的处理需求/应对方案是什么? Watermark究竟应该翻译成水印还是水位线? Watermark本质是什么? Watermark是如何解决问题? 下面我们就来简要解答这些问题以给大家一个大致概念,在后…
一FlinkTime类型 有3类时间,分别是数据本身的产生时间.进入Flink系统的时间和被处理的时间,在Flink系统中的数据可以有三种时间属性: Event Time 是每条数据在其生产设备上发生的时间.这段时间通常嵌入在记录数据中,然后进入Flink,可以从记录中提取事件的时间戳:Event Time即使在数据发生乱序,延迟或者从备份或持久性日志中重新获取数据的情况下,也能提供正确的结果.这个时间是最有价值的,和挂在任何电脑/操作系统的时钟时间无关. Processing Time 是指执…
[源码解析] 从TimeoutException看Flink的心跳机制 目录 [源码解析] 从TimeoutException看Flink的心跳机制 0x00 摘要 0x01 缘由 0x02 背景概念 2.1 四大模块 2.2 Akka 2.3 RPC机制 2.3.1 RpcEndpoint:RPC的基类 RpcService:RPC服务提供者 RpcGateway:RPC调用的网关 2.4 常见心跳机制 0x03 Flink心跳机制 3.1 代码和机制 3.2 静态架构 3.2.1 Heart…
目录 Flink的窗口机制 1.窗口概述 2.窗口分类 基于时间的窗口 滚动窗口(Tumbling Windows) 滑动窗口(Sliding Windows) 会话窗口(Session Windows) 全局窗口(Global Windows) 基于元素个数的窗口 滚动窗口 滑动窗口 3.窗口函数 ReduceFunction(增量聚合函数) AggregateFunction(增量聚合函数) ProcessWindowFunction(全窗口函数) 4.Key和No Key的窗口区别 Fli…
本文主要介绍 Flink Runtime 的作业执行的核心机制.本文将首先介绍 Flink Runtime 的整体架构以及 Job 的基本执行流程,然后介绍在这个过程,Flink 是怎么进行资源管理.作业调度以及错误恢复的.最后,本文还将简要介绍 Flink Runtime 层当前正在进行的一些工作. 查看原文.…
Apache Flink提供了一种容错机制,可以持续恢复数据流应用程序的状态.该机制确保即使出现故障,程序的状态最终也会反映来自数据流的每条记录(只有一次). 从容错和消息处理的语义上(at least once, exactly once),Flink引入了state和checkpoint. state一般指一个具体的task/operator的状态.而checkpoint则表示了一个Flink Job,在一个特定时刻的一份全局状态快照,即包含了所有task/operator的状态. Flin…
总览 Window 是flink处理无限流的核心,Windows将流拆分为有限大小的"桶",我们可以在其上应用计算. Flink 认为 Batch 是 Streaming 的一个特例,所以 Flink 底层引擎是一个流式引擎,在上面实现了流处理和批处理. 而窗口(window)就是从 Streaming 到 Batch 的一个桥梁. Flink 提供了非常完善的窗口机制. 在流处理应用中,数据是连续不断的,因此我们不可能等到所有数据都到了才开始处理. 当然我们可以每来一个消息就处理一次…
导读 Flink 为实时计算提供了三种时间,即事件时间(event time).摄入时间(ingestion time)和处理时间(processing time). 遇到的问题: 假设在一个5秒的Tumble窗口,有一个EventTime是 11秒的数据,在第16秒时候到来了.图示第11秒的数据,在16秒到来了,如下图:该如何处理迟到数据 什么是Watermark Watermark的关键点: 目的:处理EventTime 窗口计算 本质:时间戳 生成方式:Punctuated和Periodi…
WindowOperator.processElement 主要的工作,将当前的element的value加到对应的window中, windowState.setCurrentNamespace(window); windowState.add(element.getValue()); triggerContext.key = key; triggerContext.window = window; TriggerResult triggerResult = triggerContext.on…