题解 P3643 [APIO2016]划艇】的更多相关文章

题解 一种思路很好想:\(f_{i,j}\) 表示前 \(i\) 所学校中,第 \(i\) 所学校参赛且派出 \(j\) 艘划艇的方案数.(转移就不列了.) 这种方式有一个致命点,就是 \(j\) 的范围是 \(10^9\),这样连 \(9\) 分都过不去.当我们看到这么大数据范围时,一般想的都是离散化. 此时我们就可以设状态为:\(f_{i,j}\) 表示前 \(i\) 所学校中第 \(i\) 所学校参赛,且派出的划艇数落到第 \(j\) 个区间的方案数.因为一共有 \(n\) 个区间,所以…
P3643 [APIO2016]划艇 题意 一个合法序列可表示为一个长度为 \(n\) 的序列,其中第 \(i\) 个数可以为 0 或 \([l_i,r_i]\) 中一个整数,且满足所有不为零的数组成的子序列严格上升.求合法序列方案数. 思路 朴素动态规划做法为,设 \(f_{ij}\) 表示第 \(i\) 个数不为零且数量为 \(j\) 的方案数,则 \[ans=\sum_{i=1}^n\sum_{j=l_i}^{r_i}f_{ij}\\ f_{ij}=\sum_{k=1}^{j-1}\sum…
洛谷题目链接:[APIO2016]划艇 题目描述 在首尔城中,汉江横贯东西.在汉江的北岸,从西向东星星点点地分布着 \(N\) 个划艇学校,编号依次为 \(1\) 到 \(N\).每个学校都拥有若干艘划艇.同一所学校的所有划艇颜色相同,不同的学校的划艇颜色互不相同.颜色相同的划艇被认为是一样的.每个学校可以选择派出一些划艇参加节日的庆典,也可以选择不派出任何划艇参加.如果编号为 iii 的学校选择派出划艇参加庆典,那么,派出的划艇数量可以在 \(a_i\)​ 至 \(b_i\) 之间任意选择(\…
题面 传送门 题解 首先区间个数很少,我们考虑把所有区间离散化(这里要把所有的右端点变为\(B_i+1\)代表的开区间) 设\(f_{i,j}\)表示考虑到第\(i\)个学校且第\(i\)个学校必选,这个学校选择的数在离散后的第\(j\)个区间内,方案数是多少 怎么转移呢,我们考虑枚举上一个不在第\(j\)个区间的学校\(k\),设\([k+1,i]\)中有\(a\)个学校是可以选在第\(j\)个区间的,且第\(j\)个区间的长度为\(b\),然后暴力枚举这\(m\)个数中有\(q\)个选了,那…
题面 https://www.luogu.com.cn/problem/P3643 对于一个序列,第i项可取的值在{0}∪[ai,bi]之间,求使序列非零部分单调递增的方案数 分析 设 $f[i][j]$ 表示第 i 位选择的值为 j 的方案数,则有 $f[i][j]=\sum_{k=0}^{i-1}\sum_{l=1}^{j-1} f[k][l] (j\in[a_i,b_i])$ $f[i][j]=0 (j\notin[a_i,b_i])$ 很容易发现这个方程问题在于 j 的状态数过多,存不下…
题面传送门 一道难度中等的 \(dp\)(虽然我没有想出来/kk). 首先一眼 \(dp_{i,j}\) 表示考虑到第 \(i\) 个学校,第 \(i\) 个学校派出了 \(j\) 个划艇的方案数,转移也异常显然,枚举上一个派出游艇的学校以及它派出的划艇个数,那么有 \(dp_{i,j}=\sum\limits_{k<i}\sum\limits_{l<j}dp_{k,l}\),这样暴力复杂度是 \(n^2A^2\),其中 \(A=\max\{a_i,b_i\}\),可以使用前缀和优化,但照样不…
https://www.lydsy.com/JudgeOnline/problem.php?id=4584 https://www.luogu.org/problemnew/show/P3643 http://uoj.ac/problem/204 在首尔城中,汉江横贯东西.在汉江的北岸,从西向东星星点点地分布着个划艇学校,编号依次为到.每个学校都拥有若干艘划艇.同一所学校的所有划艇颜色相同,不同的学校的划艇颜色互不相同.颜色相同的划艇被认为是一样的.每个学校可以选择派出一些划艇参加节日的庆典,也…
4584: [Apio2016]赛艇 Time Limit: 70 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 在首尔城中,汉江横贯东西.在汉江的北岸,从西向东星星点点地分布着个划艇学校,编号依次为到.每个学校都 拥有若干艘划艇.同一所学校的所有划艇颜色相同,不同的学校的划艇颜色互不相同.颜色相同的划艇被认为是一 样的.每个学校可以选择派出一些划艇参加节日的庆典,也可以选择不派出任何划艇参加.如果编号为的学校选择…
题目描述 在首尔城中,汉江横贯东西.在汉江的北岸,从西向东星星点点地分布着 NNN 个划艇学校,编号依次为 111 到 NNN.每个学校都拥有若干艘划艇.同一所学校的所有划艇颜色相同,不同的学校的划艇颜色互不相同.颜色相同的划艇被认为是一样的.每个学校可以选择派出一些划艇参加节日的庆典,也可以选择不派出任何划艇参加.如果编号为 iii 的学校选择派出划艇参加庆典,那么,派出的划艇数量可以在 aia_ia​i​​ 至 bib_ib​i​​ 之间任意选择(ai≤bia_i \leq b_ia​i​​…
\(\mathcal{Description}\)   Link & 双倍经验.   给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\{c_n\}\) 的个数,使得: \(\forall i~~~~c_i=0\lor c_i\in[a_i,b_i)\). \(\forall i<j~~~~c_i\not=0\land c_j\not=0\Rightarrow c_i<c_j\).   对 \(10^9+7\) 取模.   \(n…