将$s$中的01分别变为$1,-1$,即得到一个序列$a_{i}$(设其长度为$n$,下标范围为$[1,n]$) 对$a_{i}$建立一张有向图,其点集合为$Z$,并对$\forall 0\le k<n$从$\sum_{i=1}^{k}a_{i}$向$\sum_{i=1}^{k+1}a_{i}$连边(允许重边),那么$a_{i}$即对应于其中一条以0为起点的欧拉路 若对区间$[l,r]$操作,记操作后的序列为$a'_{i}$,则有$\sum_{i=l}^{r}a_{i}=0(=\sum_{i=l…