卷积神经网络-AlexNet】的更多相关文章

一.AlexNet:共8层:5个卷积层(卷积+池化).3个全连接层,输出到softmax层,产生分类. 论文中lrn层推荐的参数:depth_radius = 4,bias = 1.0 , alpha = 0.001 / 9.0 , beta = 0.75 lrn现在仅在AlexNet中使用,主要是别的卷积神经网络模型效果不明显.而LRN在AlexNet中会让前向和后向速度下降,(下降1/3). [训练时耗时是预测的3倍] 代码: #加载数据 import tensorflow as tf fr…
一.网络结构 AlexNet由5层卷积层和3层全连接层组成. 论文中是把网络放在两个GPU上进行,为了方便我们仅考虑一个GPU的情况. 上图中的输入是224×224224×224,不过经过计算(224−11)/4=54.75(224−11)/4=54.75并不是论文中的55×5555×55,而使用227×227227×227作为输入, 卷积层C1:处理流程为:卷积.ReLU.LRN.池化. 卷积:输入为227x227x3,使用96个11x11x3的卷积核,步长为4x4,得到FeatureMap为…
本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.AlexNet模型及其基本原理阐述 1.关于AlexNet 2012年,AlexKrizhevsky提出了深度卷积神经网络模型AlexNet,可以看作LeNet的一种更深更宽的版本.该模型包含了6亿3000万个连接,6000万个参数和65万个神经元,拥有5个卷积层,其中3个卷积层后面连接了最大池化层,最后还有3个全连接层.它将LeNet的思想得到更广泛的传…
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. 其中 文章 详解卷积神经网络(CNN)已经对卷积神经网络进行了详细的描述,这里为了学习MXNet的库,所以对经典的神经网络进行实现~加深学习印象,并且为以后的使用打下基础.其中参考的为Gluon社区提供的学习资料~ 1.简单LeNet的实现 def LeNet(): """ 较早的卷积神经网络 :…
一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32*32 卷积层:2个 降采样层(池化层):2个 全连接层:2个 输出层:1个.10个类别(数字0-9的概率) LeNet-5网络是针对灰度图进行训练的,输入图像大小为32*32*1,不包含输入层的情况下共有7层,每层都包含可训练参数(连接权重).注:每个层有多个Feature Map,每个Featu…
LeNet – 5网络 网络结构为: 输入图像是:32x32x1的灰度图像 卷积核:5x5,stride=1 得到Conv1:28x28x6 池化层:2x2,stride=2 (池化之后再经过激活函数sigmoid) 得到Pool1:14x14x6 卷积核:5x5,stride=1 得到Conv2:10x10x16 池化层Pool2:2x2,stride=2 (池化之后再经过激活函数sigmoid) 得到Pool2:5x5x16 然后将Pool2展开,得到长度为400的向量 经过第一个全连接层,…
由于受到计算机性能的影响,虽然LeNet在图像分类中取得了较好的成绩,但是并没有引起很多的关注. 知道2012年,Alex等人提出的AlexNet网络在ImageNet大赛上以远超第二名的成绩夺冠,卷积神经网络乃至深度学习重新引起了广泛的关注. AlexNet特点 AlexNet是在LeNet的基础上加深了网络的结构,学习更丰富更高维的图像特征.AlexNet的特点: 更深的网络结构 使用层叠的卷积层,即卷积层+卷积层+池化层来提取图像的特征 使用Dropout抑制过拟合 使用数据增强Data…
上一节内容已经详细介绍了AlexNet的网络结构.这节主要通过Tensorflow来实现AlexNet. 这里做测试我们使用的是CIFAR-10数据集介绍数据集,关于该数据集的具体信息可以通过以下链接查看: https://blog.csdn.net/davincil/article/details/78793067 下面粗略的介绍一下CIFAR-10数据集. 一 CIFAR-10数据集 CIFAR-10数据集由10类32x32的彩色图片组成,一共包含60000张图片,每一类包含6000图片.其…
原文 ImageNet Classification with Deep ConvolutionalNeural Networks 下载地址:http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf 在这之前,关于AlexNet的讲解的博客已经有很多,我认为还是有必要自己亲自动手写一篇关于AlexNet相关的博客,从而巩固我的理解. 一  介绍 Alex…
一 实例探索 上一节我们介绍了卷积神经网络的基本构建,比如卷积层.池化层以及全连接层这些组件.事实上,过去几年计算机视觉研究中的大量研究都集中在如何把这些基本构件组合起来,形成有效的卷积神经网络.最直观的方式之一就是去看一些案例,就像很多人通过看别人的代码来学习编程一样,通过研究别人构建有效组件的案例是个不错的办法.实际上在计算机视觉任务中表现良好的神经网络框架往往也适用于其它任务,也许你的任务也不例外.也就是说,如果有人已经训练或者计算出擅长识别猫.狗.人的神经网络或者神经网络框架,而你的计算…